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Full counting statistics in the spin-1/2 Heisenberg XXZ chain

Mario Collura, Fabian H.L. Essler, and Stefan Groha
The Rudolf Peierls Centre for Theoretical Physics, Oxford University, Oxford, OX1 3NP, UK

The spin-1/2 Heisenberg chain exhibits a quantum critical regime characterized by quasi long-
range magnetic order at zero temperature. We quantify the strength of quantum fluctuations in
the ground state by determining the probability distributions of the components of the (staggered)
subsystem magnetization. Some of these exhibit scaling and the corresponding universal scaling
functions can be determined by free fermion methods and by exploiting a relation with the boundary
sine-Gordon model.

I. INTRODUCTION

Universality is a key organizing principle for continuous phase transitions1,2. It posits that certain quantities are
independent of microscopic details and coincide in different physical systems that belong to the same “universality
class”. The latter are determined by properties such as symmetries and dimensionality and are amenable to field theory
descriptions. In 1+1 dimensions this permits the exact description of universal properties such as critical exponents
and correlation functions at conformally invariant quantum critical points. As emphasized in Ref. 3, less familiar
quantities like the order parameter probability distribution function display universal scaling as well. In quantum
theory these probability distributions describe the statistics of measurements on identical systems, which generally
give rise to different outcomes. Their analysis provides very detailed information about the physical properties of
many-particle systems and has been explored in a variety of areas including condensed matter4,5 and cold atom
physics6–9. Theoretical results on full counting statistics in quantum critical systems are relatively scarce. The list of
available results includes phase fluctuations in Luttinger liquids10–13, the order parameter statistics in the Ising field
theory3, the transverse magnetization in the Ising chain14 and the magnetization in the Haldane-Shastry model15.
Here we consider the (staggered) subsystem magnetization in the anisotropic one-dimensional spin-1/2 Heisenberg
XXZ chain

H = J

L∑
j=1

Sxj S
x
j+1 + Syj S

y
j+1 + ∆Szj S

z
j+1 . (1)

The XXZ chain is a paradigmatic model for quantum critical behaviour in 1+1 dimensions. It features a critical
line parametrized by the exchange anisotropy −1 ≤ ∆ ≤ 1. The special values ∆ = ±1 correspond to the isotropic
antiferromagnet and ferromagnet respectively. In the regime −1 < ∆ ≤ 1 the low-energy behaviour of the model (1)
is described by Luttinger liquid theory or equivalently a free, compact boson16–19. The long-distance asymptotics of
spin-spin correlation functions is of the form

〈GS|Sxj+nSxj |GS〉 = (−1)n
A

4nη

(
1− B

n4/η−4

)
− Ã

4nη+1/η

(
1 +

B̃

n2/η−2

)
+ . . . ,

〈GS|Szj+nSzj |GS〉 = − 1

4π2ηn2

(
1 +

B̃z
n4/η−4

4− 3η

2− 2η

)
+ (−1)n

Az
4n1/η

(
1− Bz

n2/η−2

)
+ . . . (2)

where explicit expressions for the amplitudes in (2) are known20–23 and η is related to the anisotropy parameter ∆ by

∆ = − cos(πη). (3)

It follows from (2) that throughout the critical regime the dominant correlations are those of the staggered magne-
tizations in the xy-plane. The XXZ chain thus exhibits antiferomagnetic quasi-long range order in the XY plane in
spin space. Two-point functions such s (2) are a standard means for characterizing physical properties and identifying
ground state “phases” in quantum critical systems19. A key objective of our work is to provide a complementary
characterization of ground state properties in the critical XXZ chain by determining the quantum mechanical fluctu-
ations of the subsystem magnetization in the ground state. More precisely we consider the probability distributions
of the following observables

Sα(`) =
∑̀
j=1

Sαj , Nα(`) =
∑̀
j=1

(−1)jSαj . (4)
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The quantities Sα(`) and Nα(`) describe the smooth and staggered components of the α-component of the magneti-
zation of the subsystem consisting of sites 1 to `, where `� L. We note that whereas Sz(L) is a conserved quantity,
Sz(`) is not. The probabilities of the observables (4) taking some value m when the system is prepared in the ground
state and a measurement is then performed are

PαS (m, `) = 〈GS|δ(Sα(`)−m)|GS〉 =

∫ ∞
−∞

dθ

2π
e−iθm 〈GS|eiθSα(`)|GS〉 ,

PαN (m, `) = 〈GS|δ(Nα(`)−m)|GS〉 =

∫ ∞
−∞

dθ

2π
e−iθm 〈GS|eiθNα(`)|GS〉 . (5)

As we have already mentioned, probability distributions like (5) are experimentally measurable in cold atom experi-
ments. The central objects of our analysis are the generating functions of the moments of the probability distributions
(5) are

Gα` (θ) ≡ 〈GS|eiθSα(`)|GS〉 , Fα` (θ) ≡ 〈GS|eiθNα(`)|GS〉 . (6)

It is easy to see that they have the following properties

Xα
` (0) = 1 , Xα

` (−θ) =
(
Xα
` (θ)

)∗
, Xα

` (θ + 2π) = (−1)`Xα
` (θ) , X = F,G. (7)

The last relation allows us to restrict our attention to the interval 0 ≤ θ < 2π and can be obtained e.g. from the
representation

eiθS
α(`) =

∏̀
j=1

[
cos(θ/2) + i sin(θ/2)σαj

]
. (8)

Defining

X̃α
` (r) =

∫ π

−π

dθ

2π
e−irθ Xα

` (θ) , X = F,G, (9)

the probability distributions of interest can be expressed as

PαN (m, `) =

{∑
r∈Z F̃

α
` (r) δ(m− r) if ` is even,∑

r∈Z F̃
α
`

(
r + 1

2

)
δ
(
m− r − 1

2

)
if ` is odd.

(10)

An analogous equation holds for PαS (m, `).

A. Moments of the probability distributions

As we are not imposing a magnetic field and spontaneous symmetry breaking of the U(1) symmetry of the Heisenberg
Hamiltonian is forbidden in one spatial dimension, translational invariance implies that the averages of Sα(`) and
Nα(`) vanish

〈GS|Sα(`)|GS〉 = 0 = 〈GS|Nα(`)|GS〉. (11)

The variances have the following asymptotic expansions for large sub-system sizes `

〈GS|
(
Sα(`)

)2|GS〉 = `sα + o(`) , 〈GS|
(
Nα(`)

)2|GS〉 = `nα + o(`) . (12)

For sufficiently large values of ` we expect the coefficients sα and nα to be equal to the corresponding quantities for
the entire system, i.e.

sx = sy = lim
L→∞

1

L
〈GS|

(
SxL
)2|GS〉 , nα = lim

L→∞

1

L
〈GS|

(
Nα
L

)2|GS〉. (13)

As Sz(L) is a conserved quantity and our system is translationally invariant we have sz = 0. It is instructive to
consider the calculation of the variance of the subsystem magnetization by field theory methods. As the variances are
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non-universal quantities they are expected to be susceptible to short-distance physics, and this is indeed borne out
by the explicit calculation summarized in Appendix A.

While the moments themselves depend on microscopic details, certain ratios can be universal3,24,25. In particular
one may expect the following ratios to exhibit universal behaviour〈

(Sα(`))
2n 〉〈

(Sα(`))
2 〉n ,

〈
(Nα(`))

2n 〉〈
(Nα(`))

2 〉n . (14)

If these ratios are universal, the modified generating functions

〈GS|eiθY Y α(`)|GS〉 , θY =
θ√

〈GS|
(
Y α(`)

)2|GS〉
, Y = S,N, (15)

will be universal functions of the parameter θ. This means in particular that they can be calculated by field theory
methods. In practice (15) tells us that the moment generating functions calculated from field theory and computed
directly in the lattice model should agree up to an overall rescaling of the parameter θ.

II. FIELD THEORY DESCRIPTION OF THE XXZ CHAIN

It is well established that the long distance behaviour of local equal time correlation functions in the critical
XXZ chain is well described by (perturbed) Luttinger liquid theory20,22,23,26,27. In absence of a magnetic field the
Hamiltonian can be cast in the form

H(∆) =
v

2

∫
dx

[
K(∂xθ)

2 +
1

K
(∂xφ)2

]
+ . . . , (16)

where φ and θ are Bose fields with commutation relations [φ(t, x), θ(t, y)] = (i/2)sgn(x− y), the dots indicate pertur-
bations that are irrelevant in the renormalization group sense and

v =
π

2

√
1−∆2

arccos ∆
, K =

π

2

1

π − arccos ∆
, (17)

The bosonization formulas for the spin operators are

Szj ' −
a0√
π
∂xφ(x) + (−1)jc1 sin(

√
4πφ(x)) + . . . , (18)

Sxj ' b0(−1)j cos
(√
π θ(x)

)
+ ib1 sin

(√
π θ(x)

)
sin
(√

4πφ(x)
)

+ . . . , (19)

where a0 is the lattice spacing and the amplitudes b0, c1, b1 are known exactly23. For large subsystem sizes we thus
have

Sz(`) ≈ − 1√
π

[φ(`a0)− φ(0)] + . . . ,

Nz(`) ≈ c1
a0

∫ `

0

dx sin
(√

4πφ(x)
)

+ . . . ,

Nx(`) ≈ b0
a0

∫ `

0

dx cos
(√
πθ(x)

)
+ . . . . (20)

Applying the bosonization prescription to our generating functions and ignoring subleading terms we obtain

Gz` (θ) ≈
〈
0|e−i

θ√
π
φ(`a0)

e
i θ√

π
φ(0)|0

〉
,

F z` (θ) ≈
〈
0|e−iθ

c1
a0

∫ `
0
dx sin

(√
4πφ(x)

)
|0
〉
,

F x` (θ) ≈
〈
0|e−iθ

b0
a0

∫ `
0
dx cos

(√
πφ(x)

)
|0
〉
, (21)

where |0〉 is the Fock vacuum. The representation (21) reveals that Gz` (θ) maps onto a simple vertex operator two-
point function in the free boson theory, whereas Fα` (θ) correspond to expectation values of non-local operators. The
alert reader will have noted that we did not provide a bosonized expression for Gx` (θ). The reason is that the field
theory calculation of Gx` (θ) is easier in a somewhat different setup and we return to this issue in section IV B 1.
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III. GENERATING FUNCTIONS FOR THE STAGGERED SUBSYSTEM MAGNETIZATION

We start by considering the probability distributions of the staggered subsystem magnetizations PαN (m, `) and the
corresponding generating functions Fα` (θ). We first present analytic results in certain limits and then compare these
to numerical ones.

A. The XX point ∆ = 0

At the XX point the Heisenberg model can be mapped to non-interacting spinless fermions by means of a Jordan-
Wigner transformation. Using standard techniques28 we can derive the following determinant representation for the
longitudinal generating function F z` (θ)

F z` (θ) = det [B] , Bnm = ei
θ
2 (−1)nδn,m + 2 sin(θ/2)(−i)(−1)n+(−1)mCn,m . (22)

Here Cnm is the correlation matrix of the free fermion chain obtained by the Jordan Wigner transformation

Cnm =
sin
(
π
2 (m− n)

)
π(m− n)

. (23)

The matrix Bnm is a Toeplitz matrix29. Its properties have been analyzed in great detail in the context of entanglement
entropies in Ref. 30. For large values of the subsystem size ` one obtains the following asymptotic expansion30

F z` (θ) =
(

cos(θ)
) `

2

∞∑
m=−∞

(−1)m`(2`)−2
(
m+β(θ)

)2
G2
(
m+ 1 + b(θ)

)
G2
(
1−m− b(θ)

) [
1 +

c2
(
m+ b(θ)

)
`2

+ . . .

]
(24)

where

b(θ) =
1

2πi
ln

[
cos(θ/2)− sin(θ/2)

cos(θ/2) + sin(θ/2)

]
, c2(β) = −β

2(1 + 8β2)

6
. (25)

It follows from (24) that F z` (θ) is very small except in the vicinities of θ ≈ 0, π. To analyze the behaviour in these
regions it is useful to define the following scaling limits:

S1: θ → 0, `→∞, while keeping z = θ`1/2 fixed.

In this regime the generating function reduces to a simple Gaussian in the scaling variable

F z` (θ) ∼ e−z2/4 . (26)

S2: θ → π, `→∞, while keeping y = (π − θ)`1/2 fixed.

In this regime the behaviour depends on the parity of the subsystem size

F z` (θ) ∼
√

2G2(1/2)G2(3/2) e−y
2/4 ×

 (−1)`/2`−1/2 , ` even

(−1)(`−1)/2 `−1[c+ log(2`)] y/π , ` odd
(27)

where c = 2 log(2) + γE and γE ≈ 0.577216.

We will see in the following that the two limits S1 and S2 are useful for analyzing numerical results for F z` (θ).

B. Field theory approach

In the field theory approach we are tasked with evaluating the expressions (21) for Fα` (θ). This can be done by
following the analysis of Refs 10–12, which considered generating function for phase fluctuations in Luttinger liquids.
Expanding in powers of θ we obtain

F x` (θ) ≈
∞∑
n=0

(
iθb0
2a0

)2n
1

(2n)!

∫ `

0

dx1· · ·
∫ `

0

dx2n 〈2 cos
(√
πθ(x1)

)
. . . 2 cos

(√
πθ(x2n)

)
〉

=

∞∑
n=0

1

(n)!

(
iθ`b0
4πa0

)2n

Z
(0)
2n (L, `/L,K) , (28)
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where

Z
(0)
2n (L, z,K) =

∫ 2π

0

du1

2π
. . .

dun
2π

∫ 2π

0

dv1

2π
. . .

dvn
2π

∏n
j,k=1G(uj − vk)∏n

j<kG(uj − uk)G(vj − vk)
,

G(u) =

(
L

πa0
sin
(uz

2

))− 1
2K

. (29)

As the leading singularities of the integrand occur when uj ≈ vk we now make the further approximation

Z
(0)
2n (L, `/L,K) ≈ Z(0)

2n (`, 1,K) . (30)

This results in

F x` (θ) ≈
∞∑
n=0

1

(n!)2

(
iθ`b0
2a0

)2n

Z
(0)
2n (`, 1,K). (31)

The right hand side of (31) is equal to the partition function of a boundary sine-Gordon model, for which exact results
are available in the literature31–36. Using a result of Ref. 36 for the right hand side of (31) one has

F x` (θ) ≈ A(vac)(λ) , λ = sin
( π

4K

)
b0

(
`

2πa0

)1−1/4K

θ . (32)

The function A(vac)(λ) can be computed very efficiently from the solution of the single-particle Schrödinger equation

− ∂2
xΨ(x) +

[
x4K−2 − 1

4x2

]
Ψ(x) = EΨ(x) . (33)

Denoting by Ψ+(x,E) and χ+(x,E) the solutions to (33) with asymptotics

Ψ+(x,E) ∼
√
πx

2K
for x→ 0 ,

χ+(x,E) ∼ x−2K− 1
2 e−x

4K/4K for x→∞ , (34)

we have

A(vac)(λ) =
1

2
W [χ+,Ψ+]

∣∣∣∣∣
E=ρλ2

, ρ = (8K)2−1/2KΓ2(1− 1/4K), (35)

where W [f, g] = f∂xg − g∂xf denotes the Wronskian.
Let us now turn to the longitudinal generating function F z` (θ). It has an integral representation

F z` (θ) ≈
∞∑
n=0

(
iθc1
2a0

)2n
1

(2n)!

∫ `

0

dx1· · ·
∫ `

0

dx2n 〈2 sin
(√

4πφ(x1)
)
. . . 2 sin

(√
4πφ(x2n)

)
〉 . (36)

This expression needs to be regularized because

〈ei
√

4πφ(x) e−i
√

4πφ(x)〉 =

(
L

πa0
sin
(πx
L

))−2K

, (37)

and K ranges from 1/2 at the isotropic point ∆ = 1 to infinity when the ferromagnetic point is approached (∆→ −1).
The right-hand side of (36) can again be related to the partition function of a boundary sine-Gordon model, but the
boundary interaction for ∆ < 1 is now irrelevant. This suggests that F z` (θ) will be independent of ∆ and equal to
the result at ∆ = 0, i.e.

F z` (θ) ≈ e−z2/4 , z = θ`1/2. (38)

Eqns (32), (35) and (38) provide us with explicit expressions for the generating functions Fα` (θ) that now can be
compared to numerical results for the lattice model.
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C. Numerical Method

Our numerical approach is based on the iTEBD algorithm37,38. A translationally invariant MPS representation of
the ground state of the XXZ Hamiltonian is obtained as follows. We initialize the system in the simple product state⊗

j∈Z(| ↑〉j + | ↓〉j)/
√

2, which admits an MPS representation with auxiliary dimension χ = 1. We then evolve the

state in imaginary time by the operator exp(−τH) by means of a second order Suzuki-Trotter decomposition with
imaginary time-step τJ = 10−3. During imaginary time evolution the MPS loses its canonical form, which we then
restore before taking expectation values of operators.

In order to control the convergence of the imaginary time algorithm we keep track of the energy density. In
practice we run the algorithm until the energy density becomes stationary (within machine precision). We repeat this
procedure with auxiliary dimensions of up to χ = 256. In Table I we present our best estimates for the ground-state
energy densities for different values of ∆ and compare them to the known exact result

EGS =
1

4

∫ ∞
−∞

dλ
1

2π cosh
(

λ
1−η

) 4(∆2 − 1)

cosh(2λ)−∆
+

∆

4
. (39)

TABLE I: Energy densities from iTEBD and exact formula (39) for several values of ∆.

∆ EMPS EGS δE(×10−8)

−0.8 −0.256339667 −0.256339677 0.96

−0.6 −0.267640618 −0.267640628 1.03

−0.4 −0.282089887 −0.282089903 1.62

−0.2 −0.299086657 −0.299086680 2.23

0 −0.318309858 −0.318309886 2.84

0.2 −0.339564266 −0.339564304 3.84

0.4 −0.362727187 −0.362727227 4.06

0.6 −0.387725863 −0.387725910 4.71

0.8 −0.414528779 −0.414528832 5.35

Our numerical results for the energy densities differ from the exact values by O(10−8), which is quite satisfactory
given that the model is gapless. Once we have obtained the MPS description of the ground state, we can straight-
forwardly evaluate the generating functions Fα` (θ) and Gα` (θ) with a computational cost that scales as O(`χ3). A
useful check on the numerical accuracy of our results can be obtained by considering the noninteracting case ∆ = 0,
where the exact determinant formula (22) for the generating function of the longitudinal staggered magnetization is
available. The discrepancy between the iTEBD data and the exact result increases as expected with the subsystem
size `. However up to subsystem sizes of ` = 200 the relative error of our iTEBD result is less than 0.1%.

D. Numerical results for the transverse generating function F x` (θ)

Numerical results for F x` (θ) as a function of θ for several values of the subsystem size ` are shown in Fig. 1. We see
that the generating function is very small everywhere except in the vicinities of θ = 0, π. We also observe that the
oscillatory behaviour as a function of θ becomes more pronounced in the attractive regime ∆ < 0.

Based on the field theory analysis of section III B we expect the θ ≈ 0 regime to exhibit scaling with a universal
scaling function given by (32), (35)

F x` (θ ≈ 0) = Fx0 (z) , z = θ`1−η/2 . (40)

Here Fx0 (z) is related to the function A(vac)(λ) in (35) by

Fx0 (z) = A(vac)(cz) , (41)

where c is a non-universal ∆-dependent constant that arises from the fact that while the ratios (14) are universal,
the second moment itself is not, cf. the discussion preceding eqn (15). In practice we determine c by carrying out a
best fit of our numerical data to (41). In Fig. 2 we present a comparison of our numerical results for F x` (θ) to the
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FIG. 1: Staggered transverse generating function F x` (θ), for representative values of ∆ and `.

field theory prediction (32), (35). We see that the numerical data exhibits scaling collapse and the agreement with
the theoretical scaling function is clearly very good. This holds for all values of ∆ we have considered in the critical
regime −1 < ∆ ≤ 1. We again see that in the attractive regime ∆ < 0 the oscillatory behaviour away from θ = 0
becomes more pronounced.
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FIG. 2: Staggered transverse generating function F x` (θ) for several values of ∆. The numerical results (symbols) are seen to
exhibit scaling collapse in the variable θ`1−2η and are well described by the universal scaling function (32), (35) calculated from
the boundary sine-Gordon model (red line).

We now turn to the other region in which F x` (θ) is sizeable, namely θ ≈ π. Interestingly, as shown in Figs 3 and
4, we observe scaling behaviour here as well. There is a strong parity effect in the subsystem size ` which requires us
to consider even and odd ` separately. Our numerical data in the vicinity of θ = π is well described by the scaling
ansatz

F x` (θ ≈ π) ' (−1)b`/2c`−1/4Fxe/o(z) , z = (θ − π)`1−η/2 , (42)

where e/o refers to even and odd subsystem size ` respectively. Inspection of Figs 3 and 4 shows that the ansatz is in
excellent agreement with the data. We note that at θ = π the numerical data (for ` even) exhibit a perfect algebraic
decay ∼ `−1/4, independent of the value of the interaction ∆. The form (42) suggests that for very large subsystem
sizes in the thermodynamic limit the feature at F x` (θ ≈ π) becomes less and less important compared to F x` (θ ≈ 0).
At present no analytic results on F x` (θ ≈ π) are known. It should in principle be possible to calculate F xe/o(z) using

field theory methods.
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FIG. 3: Scaling behaviour of the staggered transverse generating function F x` (θ) for θ ≈ π, even subsystem sizes ` and several
values of exchange anisotropy ∆.
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FIG. 4: Same as Fig. 3 for odd `.

E. Probability distribution P xN (m, `) of the transverse, staggered subsystem magnetization

We are now in a position to determine the probability distribution P xN (m, `) from the generating function F x` (θ)
using eqn (10). In Fig. 5 we show results for P xN (m, `) as a function of m for several values of the exchange anisotropy

∆ and subsystem sizes `. As P xN (m, `) is a sum over δ-functions, cf. eqn (10), we plot the corresponding weights F̃ x`
at the appropriate values of m. We observe that

1. There is a strong even/odd effect in m. The results for even and odd m follow different smooth curves. The
separations between even and odd curves slowly tend to zero as `−1/4 as the subsystem size ` is increased.

2. There is a weaker even/odd effect in the subsystem size `. This effect remains visible even for the large subsystem
sizes we consider here. The magnitude of this effect grows with ∆ and is strongest for ∆ → 1, i.e. when we
approach the isotropic antiferromagnet.

3. The probability distributions are quite broad, implying strong quantum fluctuations in the staggered transverse
subsystem magnetization.

4. The width of P xN (m, `) increases as the interaction becomes more attractive and the distribution flattens.

5. The distribution for attractive and moderately repulsive interactions is bi-modal, while for ∆ ≈ 1 it displays a
single maximum.

These observations can be understood in terms of our scaling analysis of the generating function F x` (θ). The
probability distribution PN (m, `) is dominated by the behaviour of F x` (θ) in the regions θ = 0, π, and exploiting the
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FIG. 5: Probability distribution functions P xN (m, `) for ∆ = −0.6, ∆ = 0 and ∆ = 0.6. As P xN (m, `) is a sum over δ-functions
we plot the corresponding weights at the appropriate values of m. The solid red lines show the field theory result, which
becomes exact in the large-` limit.

observed scaling behaviour of these contributions we conclude that

P xN (m, `) ' ` η2−1F̃x0 (m/`1−η/2) + (−1)b`/2c+bmc`
η
2−5/4F̃xe/o(m/`1−η/2), (43)

where F̃x0 and F̃xe/o are obtained by Fourier transforming the functions Fx0 (z) and Fxe/o(z) that describe the scaling

behaviour of the generating function around θ = 0 and θ = π respectively. For large subsystem sizes ` the even/odd

effect in m disappears and we are left with `
η
2−1F̃x0 (m/`1−η/2), which can be calculated exactly using the boundary

sine-Gordon mapping. The corresponding contribution is shown by a solid red line in Figs 5 and 6. We see that for
attractive and moderately strong repulsive interactions there is an enhanced probability to form a large positive or
negative staggered moment in the xy-plane. However, this enhancement is not particularly pronounced. The effect
is strongest close to the ferromagnet at ∆ = −1 as can be seen in Fig. 6, which presents results for P xN (m, `) at
∆ = −0.95. We observe that for large subsystem sizes ` the probability distribution becomes fairly flat over most of
allowed range of staggered magnetizations −`/2 ≤ m ≤ `/2 except for an enhancement close to the maximal possible
values m ≈ ±`/2.
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FIG. 6: Probability distribution functions P xN (m, `) for ∆ = −0.95. As the system become more and more ”ferromagnetic” the
probability distribution for the staggered subsystem magnetisation tends to become broader and flat.
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F. Longitudinal generating function F z` (θ) and probability distribution P zN (m, `)

We now turn to the longitudinal generating function F z` (θ). As we will see, its behaviour is rather different from
F x` (θ). According to the field theory approach discussed in section III B we expect F z` (θ) to be described by the
scaling function

F z` (θ ≈ 0) = e−γz
2/4 , z = θ`1/2 , (44)

where γ is a ∆-dependent constant that encodes the fact that appropriate ratios of moments are universal, while the
second moment itself is not, cf. eqn (15). Numerical results for F z` (θ) are shown in Fig. 7 and are seen to be in
excellent agreement with the scaling form (44). The coefficient γ is found to be consistent with
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0.8

1
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F 𝓁
(θ

)
z

𝓁=100

FIG. 7: Staggered longitudinal generating function F z` (θ ≈ 0) for several values of ∆. The numerical data exhibit scaling
collapse that is in excellent agreement with the universal scaling function exp(−γz2/4) (red line).

γ =
1

2− 2η
. (45)

We conclude that the fluctuations of Nz(`) have a very simple form: the second moment is

〈GS|
(
Nz(`)

)2|GS〉 =
`

8− 8η
+ o(`) , (46)

while all higher cumulants vanish. We now turn to the behaviour of F z` (θ ≈ π). Guided by the exact result (27) for
∆ = 0 we have attempted to describe our numerical data by the ansatz

F z` (θ ≈ π) =

{
(−1)`/2A `αe−γz

2/4 ` even

(−1)(`−1)/2 B
c+log(2`)`

β ze−γz
2/4 ` odd

, z = (π − θ)`1/2. (47)

Here A, B, α, β and c are ∆-dependent parameters that we fix by considering the `-dependencies of F z` (π) (for `
even) and ∂θF

z
` (θ) (for ` odd). Our numerical results suggest that

α =
1

4η
, β =

1

2η
. (48)

In Figs 8 and 9 we compare numerical results for F z` (θ ≈ π) for several values of ∆ and ` to the scaling ansatz (47),
(48). The agreement is seen to be quite satisfactory in all cases. Having determined the generating function F z` (θ) we
can now use it to obtain the probability distribution of the longitudinal staggered subsystem magnetization P zN (m, `)
by Fourier transform. Results for several values of ∆ and ` are presented in Fig. 10.
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FIG. 8: Scaling behaviour of the staggered longitudinal generating function F z` (θ ≈ π) for even subsystem sizes ` and several
values of ∆. For the XX point the full red line represents the analytical scaling function 0.588353 exp(−z2/4).
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FIG. 9: Scaling behaviour of the staggered longitudinal generating function F z` (θ ≈ π) for odd subsystem sizes ` and several
values of ∆. For the XX case, the red line represent the analytical scaling function in Eq. (27). The constant c equals
2 log(2) + γE for ∆ = 0 and has been set to c ' −2.8 for ∆ = −0.6 and c ' 0.5 for ∆ = 0.6 respectively.

The probability distribution is again a sum over delta-functions that fix the allowed values of m and we plot the
corresponding weights. We observe that in all cases P zN (m, `) exhibits a single maximum centred at m = 0 and is
significantly narrower than its transverse counterpart P xN (m, `). There is again an even/odd effect in m that increases
in magnitude as ∆ approaches 1, but it is generally weaker than in the transverse case. There also is an even/odd
effect in the subsystem size `.

IV. GENERATING FUNCTIONS FOR THE SUBSYSTEM MAGNETIZATION

We now turn to the probability distribution of the (smooth) subsystem magnetization. We first consider the
longitudinal generating function Gz` (θ), as analytic results are readily available for it.

A. Longitudinal generating function Gz` (θ)

For large subsystem sizes the longitudinal generating function can be determined by standard methods: at ∆ = 0
free fermion techniques apply, while for general values of ∆ Luttinger liquid methods provide detailed predictions.
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FIG. 10: Probability distribution functions P zN (m, `) for ∆ = −0.6, ∆ = 0 and ∆ = 0.6. In the noninteracting case the
full lines are the exact results obtained using the determinant formula. In the interacting cases, the red dashed lines are the
leading smooth contribution coming from the scaling behaviour of the generating function in the vicinity of θ = 0. Notice in
particular that, in the ferromagnetic regime, the sub-leading staggered corrections are almost invisible for the sizes considered
here. Otherwise, as the antiferromagnetic regime is approached, the sub-leading parity effects become more significant.

1. The XX point ∆ = 0

As it is straightforward to take into account a magnetic field along the z-direction in this case, we present results
for the subsystem magnetization in the ground state of the Hamiltonian

H = J

L∑
j=1

(
Sxj S

x
j+1 + Syj S

y
j+1

)
− h

L∑
j=1

Szj , 0 < h < 1. (49)

Here a simple determinant formula for Gz` (θ) is known39

Gz` (θ) = ei
θ`
2 det

[
I + (e−iθ − 1)C

]
,

Cnm =
sin(kF (m− n))

π(m− n)
, kF = arccos(h/J) . (50)

The Toeplitz determinant (50) is related to a determinant that has been analyzed in great detail in the context of
entanglement entropies30. Using the results of Ref. 30 the large-` asymptotics of Gz` (θ) can be expressed in the form

Gz` (θ) = ei`θ/2
∞∑

j=−∞
ρ`(j +

θ

2π
) (51)

where

ρ`(β) = e−2iβkF `
(
2` sin(kF )

)−2β2

G2(1 + β)G2(1− β)

[
1 +

c1(β)

`
+
c2(β)

`2
+ . . .

]
. (52)

Here G(z) is the Barnes G-function and

c1(β) = 2iβ3 cot(kF ) , (53)

c2(β) =
β2

6
(−1 + 7β2 + 12β4 − 3β2(5 + 4β2) csc2 kF ) . (54)

The leading terms in (51) correspond to j = 0, 1 and have been considered previously in Ref. 40. The constant c1(β)
has been conjectured in Ref. 41. At zero magnetic field we have kF = π/2 and

c1(β) = 0 , c2(β) = −1

6
β2(1 + 8β2). (55)

We note that at zero magnetic field the generating function is real. This is because all odd cumulants vanish as a
consequence of particle-hole symmetry. This ceases to be the case at finite magnetic fields, but odd cumulants still
vanish in the large ` limit (as for the gas42).
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2. Luttinger liquid description

The large-` behaviour of the expression (21) for Gz` (θ) has been previously determined by bosonization methods in
Refs 40,43. In zero magnetic field this gives a power-law decay

Gz` (θ) '
∞∑

j=−∞
e−iπ`jDj(θ) `

−ν(θ+2πj) , (56)

where ν(θ) = θ2

4π2η and η = 1 − 1
πarccos(∆). An analytic expression for the amplitudes of the leading terms in (56)

was conjectured in Ref. 40

D0(θ) =

 Γ
(

η
2−2η

)
2
√
πΓ
(

1
2−2η

)
θ

2/(4ηπ2)

exp
[
−
∫ ∞

0

dt

t

( sinh2 θ
2π t

sinh t cosh(1− η)t sinh ηt
− θ2e−2t

4ηπ2

)]
, (57)

and D−1(θ) = D0(|θ| − 2π).

3. Comparison to iTEBD results

In Fig. 11 we show the power law decay of Gz` (θ) with subsystem size ` for several fixed values of θ. In all cases
the agreement with the Luttinger liquid prediction (56) is seen to be excellent. A comparison with the exact results
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FIG. 11: Gz` (θ) as a function of subsystem size ` for different values of the anisotropy ∆ and θ. iTEBD results (symbols) are
compared to the Luttinger liquid prediction (56) (full lines), apart from XX case (∆ = 0) where the exact formula (50) has
been used.

at ∆ = 0 provides a useful accuracy check for our iTEBD data. As expected, the discrepancy grows with increasing
subsystem size `. Moreover, it also depends on θ and grows as θ approaches ±π. However up to subsystem sizes of
` = 200 the relative error of our iTEBD result is less than 0.1%.

The probability distribution P zS(m, `) is then readily obtained by Fourier transforming Gz` (θ). Plotting again the
weights of the delta-functions that fix the possible values of m gives the results shown in Fig. 12. The probability
distribution is centred around m = 0 and is very narrow for all anisotropies ∆. Moreover, there is very little subsystem
size dependence for the large values of ` considered.

B. Transverse generating function Gx` (θ)

The generating function Gx` (θ) cannot be easily analyzed by either free fermion or bosonization methods. As we will
see in section IV B 1 it is however possible to determine it by field theory methods in particular limits. Our numerical
results indicate that Gx` (θ) decays exponentially in the subsystem size ` for all values of θ except θ = ±π, where it
displays a power-law decay for even subsystem sizes (and vanishes for odd `)

Gx2`(±π) ∝ (2`)−1/4 . (58)
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FIG. 12: Probability distribution functions P zS(m, `) for ∆ = −0.6, ∆ = 0 and ∆ = 0.6. In the noninteracting case the full
lines are the exact results obtained integrating the determinant formula.

In order to analyze our numerical data for other values of θ we have carried out fits to the following functional form

Gx` (θ) ' A(θ,∆)
e−`/ξ(θ,∆)

`α(θ,∆)

[
1 +B(θ,∆)

(−1)`

`β(θ,∆)

]
. (59)

The resulting fits to our numerical data are shown in Figure 13 for some representative values of θ. The agreement
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FIG. 13: Transverse generating function Gx` (θ) vs ` for different values of the anisotropy ∆ and parameter θ. The full lines are
best fits to the functional form 59.

between the fits and the data is seen to be very good. In Figure 14 we show the functions ξ−1(θ,∆) and α(θ,∆)
resulting from our fits for several values of the anisotropy parameter ∆. We checked the stability of the results against
the “fit window” [`min, `max] of subsystem sizes used by suitably varying `min and `max in the interval [50, 200].
The inverse decay length ξ−1(θ,∆) is seen to take its maximum around θ = π

2 and is generally quite small. As the

anisotropy ∆ approaches unity ξ−1(θ,∆) is seen to approach zero. This is expected because for ∆ = 1 the spin
rotational symmetry imposes Gx` (θ) = Gz` (θ) and as we have seen the latter decays as a power law in `. Similarly,
for the correlation length diverges for θ → ±π, which indicates power-law behaviour in ` for these values of θ. The
exponent α(θ,∆) of the power-law factor in (59) appears to be a monotonically increasing function of θ ∈ [0, π]. For
small θ it behaves as α(θ � 1,∆) ∼ θ2.

Finally we present results for the probability distribution P xS (m, `) of the smooth, transverse subsystem magneti-
zation in Fig. 15. We see that the probability distribution has a single maximum at m = 0 and is generally quite
narrow (albeit not as narrow as P zS(m, `)). Its width increases with diminishing ∆ and is largest when ∆→ −1.
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interaction strength ∆. The best fit parameters have been obtained using the function defined in (59) and considering only
even values of `.
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FIG. 15: Probability distribution functions P xS (m, `) for ∆ = −0.6, ∆ = 0 and ∆ = 0.6. The even/odd effect in m is more
pronounced for even ` and negative values of ∆.

1. Perturbed Luttinger liquid approach to the transverse generating function

In order to make progress, we consider the vicinity of the XXX point ∆ = 1 and choose our anisotropy axis to lie
along the x direction, i.e.

H(∆) = J

L∑
j=1

S̃yj S̃
x
j+1 + S̃yj S̃

y
j+1 + S̃zj S̃

z
j+1 + (∆− 1)S̃xj S̃

x
j+1 . (60)

We now bosonize at the XXX point and then take the anisotropy into account as a perturbation. In the low energy
limit the Hamiltonian can be written in the form

H(∆) =
v

2

∫
dx (∂xΘ)

2
+ (∂xΦ)

2
+

∫
dx
∑
a

g̃aJ
aJ̄a , (61)
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where g̃a ∝ (∆ − 1) and Ja and J̄a are the right and left chiral currents respectively. Defining chiral fields by
Φ(x, t) = φR(vt−x) +φL(vt+x) = ϕ̄(z̄) +ϕ(z) where z = vτ + ix, we have the following expressions for the currents

J3 =
i√
2π

: ∂ϕ(z) : , J̄3 = − i√
2π

: ∂̄ϕ̄(z̄) : ,

J+ =
1

2πa0
: exp i

√
8πϕ(z) : , J̄+ =

1

2πa0
: exp−i

√
8πϕ̄(z̄) : . (62)

By virtue of the global U(1) symmetry of H(∆) we have only two independent coupling constants and g3 = g2. The
couplings fulfill the Kosterlitz-Thouless RG-equations18

dg̃1

d log(L/b)
=

1

2πv
g̃2

2 ,
dg̃2

d log(L/b)
=

1

2πv
g̃1g̃2 , (63)

where L and b are hard long and short-distance cutoffs. To proceed it is convenient to define new couplings by

ga = − 1

2πv
g̃a . (64)

The combination g2
1 − g2

2 = µ2 is an RG invariant and can be obtained by matching to Bethe-Ansatz calculations19

µ = 2
(

1− π

2 arccos(∆− 1)

)
. (65)

The low-energy projection of the spin operator in the z-direction becomes

S̃zj ≈ m−
a0√
2π
∂xΦ(x) + (−1)ja1 sin

√
2πΦ(x) + . . . , (66)

where a0 is the lattice spacing and the amplitude a1 is known exactly23. If we now make the assumption that
the staggered piece of the spin operator can be neglected (as was the case for the longitudinal generating function
considered above), we have

Gxl (θ) = 〈GS| exp
(
iθ
∑̀
j=1

S̃zj

)
|GS〉 ≈ 〈GS|e−i

θ√
2π

(Φ(la0)−Φ(0))|GS〉 . (67)

We will now determine (67) for large subsystem sizes r = la0 by means of RG-improved perturbation theory44–46 in the
anisotropic current-current interactions (61). The Euclidean action corresponding to (61) is S = 1

2

∫
d2z(∂µΦ)2 +Sint

with

Sint =

∫
d2z

[
−g2∂ϕ(z)∂̄ϕ̄(z̄) +

g1 + g2

4πa2
0

cos
(√

8π(ϕ(z) + ϕ̄(z̄))
)

+
g1 − g2

4πa2
0

cos
(√

8π(ϕ(z)− ϕ̄(z̄)
)]
. (68)

To second order in perturbation theory in Sint we have

〈TO〉 = 〈TO〉0 − 〈TOSint〉+
1

2

(〈
TOS2

int

〉
0
− 〈TO〉0

〈
TS2

int

〉
0

)
+ . . . , (69)

where T is the imaginary time ordering operator and 〈.〉0 is the path integral average with respect to the gaussian
action. The perturbative expansion of the transverse generating function Gxr (θ) thus reads

Gxr (θ) =
〈
Te
−i θ√

2π
(Φ(r)−Φ(0))

〉
=
(a0

r

) θ2

4π2

+ T1 +

3∑
a=1

T2,a , (70)

where T1 and T2,a denote the contributions at first and second order. The first order contribution can be evaluated
following Ref. 47, which gives a logarithmic divergence in the short-distance cutoff b

T1 = −
(a0

r

) θ2

4π2 g2θ
2

8π2
log
(r
b

)
. (71)
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Due to electro-neutrality the various interaction terms in (68) do not mix in second order perturbation theory. The
contribution proportional to g2

2 can again be evaluated following Ref. 47 with the result

T2,1 = −
(a0

r

) θ2

4π2 g2
2

2

[( θ2

8π2

)2

log2
(r
b

)
+
( θ

4π

)2

log
(r
b

)]
. (72)

The contribution T2,2 proportional to (g1 + g2)2 is of the form

T2,2 =
(a0

r

) θ2

4π2

(
g1 + g2

8π

)2 ∫
d2z

∫
d2w

1

|z − w|4

[( |r − z| |w|
|r − w| |z|

) θ
π

− 1

]
. (73)

The logarithmically divergent parts of (73) can be determined by adapting the results of Refs 48,49 to our real-space
cutoff regularization scheme. This gives

T2,2 =
(a0

r

) θ2

4π2

(
g1 + g2

8π

)2 [
θ2 log2

(r
b

)
+ θ2

(
2− 2γE − ψ

( θ

2π

)
− ψ

(
− θ

2π

))
log
(r
b

)]
, (74)

where γE is the Euler-Mascheroni constant and ψ(x) is the Digamma function. To lighten notations in what follows
we define

c2(θ) = 2− 2γE − ψ
(
θ

2π

)
− ψ

(
− θ

2π

)
. (75)

The third and final contribution in second order of perturbation theory is proportional to (g1 − g2)2

T2,3 =
(a0

r

) θ2

4π2

(
g1 − g2

8π

)2 ∫
d2z

∫
d2w

1

|z − w|4

[(
r − z
r − z̄

r − w̄
r − w

z̄

z

w

w̄

) θ
2π

− 1

]
. (76)

While the leading log2(r/b) contribution can be easily extracted analytically, we resorted to a numerical integration
for determining the subleading log(r/b) term

T2,3 =
(a0

r

) θ2

4π2

(
g1 − g2

8π

)2 (
−θ2 log2

(r
b

)
+ c3(θ) log

(r
b

))
. (77)

Our numerical results for T2,3 are well-described by the functional form (77) as can be see in Fig. 16.
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FIG. 16: (Left) Best fit of numerical results for the integral (76) to the functional form (77). The agreement is seen to be very
good. (Right) Function c3(θ) extracted from the numerical fit.

We now want to RG-improve the perturbative result (70) for Gxr (θ) by solving the Callan-Symanzik equation(
∂

∂ log(r/b)
+
∑
i

βi({g}j)
∂

∂gi
+ 2γφ

)
Gxr (θ) = 0 . (78)
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The anomalous dimension is extracted from the perturbative expansion and is given by

γφ = g2
θ2

16π2
− g2

2

θ2

64π2
− c2(θ)

128π2
(g1 + g2)2 − c3(θ)

128π2
(g1 − g2)2 . (79)

Solving the Callan-Symanzik equation by the method of characteristics we obtain

Gxr (θ) ∝
(
b

r

) θ2

4π2

exp
(
− 2

∫ log r/b

0

dl γφ

)
F
(
r, {g(r)}j

)
. (80)

The running couplings at scale log(r/b) are obtained by integrating (63)

g1(l) =
g1(0) + µ tanhµl

1 + g1(0)
µ tanhµl

, g2(l) =
1

coshµl

g2(0)

1 + g1(0)
µ tanhµl

. (81)

We now expand (80) in powers of the coupling constant and match the result to the perturbative expression (70).
This provides us with an expansion of the function F in (80). Putting everything together we arrive at the following
expression for the RG improved correlator

Gxr (θ, {g}j) = A
(
b

r

)( θ
2π )

2
+( µ

8π )
2
(c2(θ)+c3(θ))

×
(
g2(r) + g1(r)

g2(0) + g1(0)

) θ2

8π2

e
θ2+c2(θ)+c3(θ)

32π2

(
g1(r)−g1(0)

)
+
c2(θ)−c3(θ)

32π2

(
g2(r)−g2(0)

)
. (82)

The overall amplitude A(θ) is obtained by fitting to iTEBD results for Gx` (θ). This leaves us with one free parameter,
namely the initial coupling g1(0). We fix this by fitting (82) to iTEBD results for one value of θ. In Fig. 17 we
compare (82) obtained in this way to numerical results obtained by iTEBD for ∆ = 0.95. The agreement is seen
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FIG. 17: Comparison of RG-improved perturbation theory (82) to iTEBD results for ∆ = 0.95 and several values of θ.

to be quite satisfactory. For larger subsystem sizes we expect Gx` (θ) to exhibit exponential decay in the subsystem
size `. This clearly goes beyond RG-improved perturbation theory. It is an interesting problem how to obtain the
corresponding correlation length in the framework of the perturbed Luttinger liquid (61).

V. FULL COUNTING STATISTICS FOR THE HEISENBERG FERROMAGNET (∆ = −1) IN THE
ZERO MAGNETIZATION SECTOR Sz = 0

At ∆ = −1 the model (1) undergoes a first order quantum phase transition, where the total magnetisation of the
ground state discontinuously jumps from Sz = 0, for ∆ > −1, to Sz = ±L, for ∆ < −1. However, if we restrict
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ourselves to the sector of the Hilbert space with zero total magnetisation, the ground state for ∆ = −1 is continuously
connected the ground state for ∆ + 1 = 0+. The ground state in the Sz = 0 sector at ∆ = −1 on a lattice with L
sites is

|GS〉|∆=−1 =
∏
j odd

(2Szj )︸ ︷︷ ︸
U

1

N [S−]
L
2 |↑1 . . . ↑L〉 , (83)

where S− =
∑L
j=1 S

x
j − iSyj . Here N is a normalization factor and the unitary transformation with U maps the

Hamiltonian (1) at ∆ = −1 to the isotropic ferromagnet. We note that the state [S−]
L
2 | ↑1 . . . ↑L〉 admits an exact

MPS representation with auxiliary dimension L+ 1 in terms of the vector-valued matrix Γαβ = δαβ | ↑〉+ δα+1 β | ↓〉,
and boundary vectors vlα = δαL+1, vrα = δα 1.

A. Full counting statistics

The ground state (83) has the following useful representation

|GS〉|∆=−1 =
1

2L

∑
σ1,...,σL

 ∏
j odd

σj

 |σ1, σ2, . . . , σL〉 , (84)

which makes it possible to obtain closed-form expressions for the generating functions on the (staggered) subsystem
magnetization. A straightforward combinatorial analysis gives the following results for the generating functions for a
finite chain of L sites

Gz` (θ) =
(

cos(θ/2)
)`

2F1

(1− `
2

,− `
2

;
1− L

2
;− tan2(θ/2)

)
,

F z` (θ) =
(

cos(θ/2)
)`

2F1

(1

2
,−
⌊
`

2

⌋
;

1− L
2

;− tan2(θ/2)
)
,

Gx` (θ) =
(

cos(θ/2)
)`

3F2

(1

2
,−
⌊
`

2

⌋
,−L

2
; 1,

1− L
2

;− tan2(θ/2)
)
,

F x` (θ) =
(

cos(θ/2)
)`

3F2

(1− `
2

,− `
2
,−L

2
; 1,

1− L
2

;− tan2(θ/2)
)
. (85)

In the limit L→∞ (86) simplify to

Gz` (θ) = F z` (θ) =
(

cos(θ/2)
)`
,

Gx` (θ) =
(

cos(θ/2)
)`

2F1

(
1/2,−b`/2c; 1;− tan2(θ/2)

)
,

F x` (θ) = P` (cos(θ/2)) , (86)

were P`(z) are Legendre polynomials. In the vicinity of θ = 0 the generating functions (86) exhibit scaling for large
subsystem sizes `

Gz` (θ) = F z` (θ) = e−z
2/8, z = θ`1/2,

Gx` (θ) = e−z
2/16I0(z2/16),

F x` (θ) = J0(z̃/2), z̃ = θ`, (87)

where In(z) and Jn(z) are (modified) Bessel functions. We note that the universal scaling function in eqn (44) reduces
to (87) in the limit ∆→ −1.
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1. Probability distribution functions

From (87) we can extract the following analytic expressions for the probability distribution functions at ∆ = −1

P zS(m, `) = P zN (m, `) = `−1/2
√

2/π e−2m2/`,

P xS (m, `) = `−1/2
√

2/π3 e−m
2/`K0(m2/`),

P xN (m, `) = `−1 2

π
√

1− 4m2/`2
, (88)

where Kn(z) are modified Bessel functions. In Fig. 18 we compare (88) to iTEBD results for finite `. The agreement
is clearly excellent.
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FIG. 18: Rescaled probability distribution functions for ∆ = −1. The even/odd effect in m is more pronounced for even `.
The full red lines represent the analytic expressions (88) describing the scaling limit.

VI. SUMMARY AND CONCLUSIONS

We have carried out a detailed study of the probability distributions of the components of the smooth and staggered
subsystem magnetizations in the ground state of the critical spin-1/2 Heisenberg XXZ chain. We have shown through
a combination of field theory and numerical calculations that appropriate ratios of the moments of these probability
distributions are universal. The probability distributions of the longitudinal staggered subsystem magnetization is
essentially Gaussian. This is in contrast to the transverse component Nx(`), which can be thought of as the order
parameter of the magnetic quasi long-range order in the XXZ chain. The corresponding probability distribution in
the ground state P x(m, `) is very broad and for attractive and weakly repulsive interactions it exhibits two slight
maxima at fairly large values of Nx(`). We have shown that the dominant features for large subsystem sizes can be
understood in terms of a mapping to the boundary sine-Gordon field theory. The subleading contributions also exhibit
scaling, and their calculation in a field theory framework is an interesting open problem. The behaviour of the smooth
subsystem magnetization Sα(`) is rather different from the staggered one. The generating function for the moments of
the longitudinal component decays as a power law in subsystem size and can be accurately determined using Luttinger
liquid theory. The corresponding probability distribution P zS(m, `) is extremely narrow and centred around zero. This
is perhaps not surprising as Sz(L) is conserved as a result of the U(1) symmetry of the XXZ Hamiltonian. The
probability distribution for the transverse component Sx(`) is narrow and exhibits a single maximum at zero as well.
The corresponding generating function of the moments Gx` (θ) decays exponentially in `. We have shown that close to
the antiferromagnetic point ∆ = 1 its behaviour for intermediate values of ` can be determined by renormalization
group improved perturbation theory. This calculation does not account for the exponential decay seen for large values
of `. The description of the large-` regime by field theory methods remains an interesting open problem.
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Appendix A: Variance of the subsystem magnetization

The two-point functions in the XXZ chain have been determined in the framework of perturbed Luttinger liquid
theory by Lukyanov and Terras23. After inversion of the spin quantization axes on all odd sites their result is given
by (2), where the amplitudes are

A =
1

2(1− η)2

[
Γ( η

2−2η )

2
√
πΓ( 1

2−2η )

]η
exp

{
−
∫ ∞

0

dt

t

( sinh(ηt)

sinh(t) cosh((1− η)t)
− η e−2t

)}
,

Ã =
2

η(1− η)

[
Γ( η

2−2η )

2
√
πΓ( 1

2−2η )

]η+ 1
η

exp

{
−
∫ ∞

0

dt

t

( cosh(2ηt)e−2t − 1

2 sinh(ηt) sinh(t) cosh((1− η)t)
+

1

sinh(ηt)
− η2 + 1

η
e−2t

)}
,

B =

[
Γ(1/η)

Γ
(
1− 1/η

)]2 [
Γ
(
1 + η

2−2η

)
2
√
πΓ
(
1 + 1

2−2η

)]4/η−4{
2π2

sin2(2π/η)
− η2

(1− η)(2− η)
− ψ′(1/η)− ψ′(3/2− 1/η)

}
,

B̃ = (1− η)2 4 Γ(1/η)

Γ
(
1− 1/η

)[ Γ
(
1 + η

2−2η

)
2
√
πΓ
(
1 + 1

2−2η

)]2/η−2

2
4
η−5

Γ( 1
η − 1

2 ) Γ(1− 1
η )

Γ( 3
2 − 1

η ) Γ( 1
η )

. (A1)

The variance sx (13) is obtained from the two-point function by

sx =
1

4
+ lim
L→∞

2

L

∑
j>k

〈GS|Sxj Sxk |GS〉. (A2)

The key identities for calculating sx are

∞∑
n=1

1

nγ
= ζ(γ) ,

∞∑
n=1

(−1)n

nγ
=
(
21−γ − 1

)
ζ(γ) , (A3)

where ζ(x) is the Riemann zeta function. These identities show that all terms in the expansion of the two-point
functions in fact contribute to sx, irrespective of how fast their power law decays are. However, for large γ the
dominant contribution comes from the n = 1 terms in the corresponding sums, i.e. from the non-universal short-
distance behaviour. This shows that it is useful to take the short-distance behaviour of the correlators into account
as precisely as possible. For example, we can decompose sx as

sx =
1

4
+ 2〈Sx2Sx1 〉+ 2

∞∑
n=2

〈Sxn+1S
x
1 〉 , (A4)

Using the Lukyanov-Terras result (2) we the obtain the following approximate expression

sx ≈
1

4
+ 2〈Sx2Sx1 〉+

A

2

[
(21−η − 1)ζ(η) + 1

]
− AB

2

[
ζ

(
η +

4

η
− 4

)(
25−η−4/η − 1

)
+ 1

]
− Ã

2

[
ζ

(
η +

1

η

)
− 1

]
− ÃB̃

2

[
ζ

(
η +

3

η
− 2

)
− 1

]
. (A5)

The nearest neighbour correlator can be simply obtained from the ground state energy per site and equals

〈0|Sxj+1S
x
j |0〉 = − 1

4π sin(πν)

∫ ∞
−∞

dz

sinh z

sinh
(
(1− ν)z

)
cosh(νz)

+
cos(πν)

4π2

∫ ∞
−∞

dz

sinh z

z cosh(z)(
cosh(νz)

)2 , (A6)
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where we have defined ν = 1
πarccos(−∆). We note that the exact next-nearest-neighbour spin-spin correlators are

also available in the literature and can be taken into account in the same way. The amplitude B has an unphysical
singularity as η → 2/3. This merely means that the perturbative calculation of Ref. 20 needs to be redone for η ≈ 2/3.
As the contribution of the B term to sx becomes important only as we approach the XXX point, we simply drop it
in the following. We can compare the field theory results to direct DMRG computations of the variance. In Table II
we show the results for several values of ∆. We see that in the attractive regime we have good agreement, while in
the repulsive regime the agreement is worse.

TABLE II: Numerical values for the variance of transverse fluctuations extracted from the two-point function.

∆ −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6

sx 0.101 0.081 0.064 0.049 0.036 0.024 0.013 0.005

DMRG 0.101 0.079 0.063 0.049 0.037 0.026 0.017 0.009
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