10 research outputs found

    Where's the transformation? Unlocking the potential of technology-enhanced assessment

    Full text link
    This study provides insight into technology-enhanced assessment (TEA) in diverse higher education contexts. The effectiveness of using technology for assessment in higher education is still equivocal, particularly in regard to evidence of improvements in student learning. This empirical research explores the affordances that technology offers to assessment for transforming student learning. A systematic literature review, guided by an analytic survey tool, was used to identify and interrogate recent scholarly articles published in 19 international journals. From a total of 1713 articles, 139 articles were identified as being focused on the use of technology for assessment. The analytic tool guided the rigorous exploration of the literature regarding the types of technology being used, the educational goal, the type of assessment, and the degree of “transformation” afforded by the technology. Results showed that, in the sample investigated, TEA is used most frequently for formative peer learning, as part of the task design and feedback stages of the assessment cycle, and that social media has been a major affordance for this. Results are discussed with a view to fostering a future culture of inquiry and scholarship around TEA in higher education

    Catalytic cleavage of HEAT and subsequent covalent binding of the tetralone moiety by the SARS-CoV-2 main protease

    Get PDF
    Here we present the crystal structure of SARS-CoV-2 main protease (Mpro) covalently bound to 2-methyl-1-tetralone. This complex was obtained by co-crystallization of Mpro with HEAT (2-(((4-hydroxyphenethyl)amino)methyl)-3,4-dihydronaphthalen-1(2H)-one) in the framework of a large X-ray crystallographic screening project of Mpro against a drug repurposing library, consisting of 5632 approved drugs or compounds in clinical phase trials. Further investigations showed that HEAT is cleaved by Mpro in an E1cB-like reaction mechanism into 2-methylene-1-tetralone and tyramine. The catalytic Cys145 subsequently binds covalently in a Michael addition to the methylene carbon atom of 2-methylene-1-tetralone. According to this postulated model HEAT is acting in a pro-drug-like fashion. It is metabolized by Mpro, followed by covalent binding of one metabolite to the active site. The structure of the covalent adduct elucidated in this study opens up a new path for developing non-peptidic inhibitors

    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease

    Get PDF
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (M^(pro)), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to M^(pro). In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2

    X ray screening identifies active site and allosteric inhibitors of SARS CoV 2 main protease

    Get PDF
    The coronavirus disease COVID 19 caused by SARS CoV 2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID 19, we have performed a high throughput x ray crystallographic screen of two repurposing drug libraries against the SARS CoV 2 main protease Mpro , which is essential for viral replication. In contrast to commonly applied x ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three dimensional protein structures, we identified 37 compounds that bind to Mpro. In subsequent cell based viral reduction assays, one peptidomimetic and six nonpeptidic compounds showed antiviral activity at nontoxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS CoV

    SARS-CoV-2 papain-like protease PLpro in complex with natural compounds reveal allosteric sites for antiviral drug design

    No full text
    SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to aid coronaviruses in evading the host’s innate immune responses. We established a high-throughput X-ray screening to identify inhibitors by elucidating the native PLpro structure refined to 1.42 Å and performing co-crystallization utilizing a diverse library of selected natural compounds. We identified three phenolic compounds as potential inhibitors. Crystal structures of PLpro inhibitor complexes, obtained to resolutions between 1.7-1.9 Å, show that all three compounds bind at the ISG15/Ub-S2 allosteric binding site, preventing the essential ISG15-PLpro molecular interactions. All compounds demonstrate clear inhibition in a deISGylation assay, two exhibit distinct antiviral activity and one inhibited a cytopathic effect in a non-cytotoxic concentration range. These results highlight the druggability of the rarely explored ISG15/Ub-S2 PLpro allosteric binding site to identify new and effective antiviral compounds. Importantly, in the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections

    Antiviral activity of natural phenolic compounds in complex at an allosteric site of SARS-CoV-2 papain-like protease

    No full text
    SARS-CoV-2 papain-like protease (PLpro) covers multiple functions. Beside the cysteine-protease activity, facilitating cleavage of the viral polypeptide chain, PLpro has the additional and vital function of removing ubiquitin and ISG15 (Interferon-stimulated gene 15) from host-cell proteins to support coronaviruses in evading the host’s innate immune responses. We identified three phenolic compounds bound to PLpro, preventing essential molecular interactions to ISG15 by screening a natural compound library. The compounds identified by X-ray screening and complexed to PLpro demonstrate clear inhibition of PLpro in a deISGylation activity assay. Two compounds exhibit distinct antiviral activity in Vero cell line assays and one inhibited a cytopathic effect in non-cytotoxic concentration ranges. In the context of increasing PLpro mutations in the evolving new variants of SARS-CoV-2, the natural compounds we identified may also reinstate the antiviral immune response processes of the host that are down-regulated in COVID-19 infections

    Inhibition of SARS-CoV-2 main protease by allosteric drug-binding

    No full text
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous health problems and economical challenges for mankind. To date, no effective drug is available to directly treat the disease and prevent virus spreading. In a search for a drug against COVID-19, we have performed a massive X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for the virus replication and, thus, a potent drug target. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds binding to Mpro^{pro}. In subsequent cell-based viral reduction assays, one peptidomimetic and five non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2

    X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease

    No full text
    The coronavirus disease (COVID-19) caused by SARS-CoV-2 is creating tremendous human suffering. To date, no effective drug is available to directly treat the disease. In a search for a drug against COVID-19, we have performed a high-throughput X-ray crystallographic screen of two repurposing drug libraries against the SARS-CoV-2 main protease (Mpro), which is essential for viral replication. In contrast to commonly applied X-ray fragment screening experiments with molecules of low complexity, our screen tested already approved drugs and drugs in clinical trials. From the three-dimensional protein structures, we identified 37 compounds that bind to Mpro. In subsequent cell-based viral reduction assays, one peptidomimetic and six non-peptidic compounds showed antiviral activity at non-toxic concentrations. We identified two allosteric binding sites representing attractive targets for drug development against SARS-CoV-2
    corecore