369 research outputs found

    Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet

    Get PDF
    This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds

    Instruments and channels in quantum information theory

    Full text link
    While a positive operator valued measure gives the probabilities in a quantum measurement, an instrument gives both the probabilities and the a posteriori states. By interpreting the instrument as a quantum channel and by using the typical inequalities for the quantum and classical relative entropies, many bounds on the classical information extracted in a quantum measurement, of the type of Holevo's bound, are obtained in a unified manner.Comment: 12 pages, revtex

    A finite model of two-dimensional ideal hydrodynamics

    Full text link
    A finite-dimensional su(NN) Lie algebra equation is discussed that in the infinite NN limit (giving the area preserving diffeomorphism group) tends to the two-dimensional, inviscid vorticity equation on the torus. The equation is numerically integrated, for various values of NN, and the time evolution of an (interpolated) stream function is compared with that obtained from a simple mode truncation of the continuum equation. The time averaged vorticity moments and correlation functions are compared with canonical ensemble averages.Comment: (25 p., 7 figures, not included. MUTP/92/1

    Dirac versus Reduced Quantization of the Poincar\'{e} Symmetry in Scalar Electrodynamics

    Full text link
    The generators of the Poincar\'{e} symmetry of scalar electrodynamics are quantized in the functional Schr\"{o}dinger representation. We show that the factor ordering which corresponds to (minimal) Dirac quantization preserves the Poincar\'{e} algebra, but (minimal) reduced quantization does not. In the latter, there is a van Hove anomaly in the boost-boost commutator, which we evaluate explicitly to lowest order in a heat kernel expansion using zeta function regularization. We illuminate the crucial role played by the gauge orbit volume element in the analysis. Our results demonstrate that preservation of extra symmetries at the quantum level is sometimes a useful criterion to select between inequivalent, but nevertheless self-consistent, quantization schemes.Comment: 24 page

    Noncommutative gravity coupled to fermions: second order expansion via Seiberg-Witten map

    Full text link
    We use the Seiberg-Witten map (SW map) to expand noncommutative gravity coupled to fermions in terms of ordinary commuting fields. The action is invariant under general coordinate transformations and local Lorentz rotations, and has the same degrees of freedom as the commutative gravity action. The expansion is given up to second order in the noncommutativity parameter {\theta}. A geometric reformulation and generalization of the SW map is presented that applies to any abelian twist. Compatibility of the map with hermiticity and charge conjugation conditions is proven. The action is shown to be real and invariant under charge conjugation at all orders in {\theta}. This implies the bosonic part of the action to be even in {\theta}, while the fermionic part is even in {\theta} for Majorana fermions.Comment: 27 pages, LaTeX. Revised version with proof of charge conjugation symmetry of the NC action and its parity under theta --> - theta (see new sect. 2.6, sect. 6 and app. B). References added. arXiv admin note: substantial text overlap with arXiv:0902.381

    Cosmological perturbations and short distance physics from Noncommutative Geometry

    Get PDF
    We investigate the possible effects on the evolution of perturbations in the inflationary epoch due to short distance physics. We introduce a suitable non local action for the inflaton field, suggested by Noncommutative Geometry, and obtained by adopting a generalized star product on a Friedmann-Robertson-Walker background. In particular, we study how the presence of a length scale where spacetime becomes noncommutative affects the gaussianity and isotropy properties of fluctuations, and the corresponding effects on the Cosmic Microwave Background spectrum.Comment: Published version, 16 page

    The Fuzzy Sphere: From The Uncertainty Relation To The Stereographic Projection

    Full text link
    On the fuzzy sphere, no state saturates simultaneously all the Heisenberg uncertainties. We propose a weaker uncertainty for which this holds. The family of states so obtained is physically motivated because it encodes information about positions in this fuzzy context. In particular, these states realize in a natural way a deformation of the stereographic projection. Surprisingly, in the large jj limit, they reproduce some properties of the ordinary coherent states on the non commutative plane.Comment: 18 pages, Latex. Minor changes in notations. Version to appear in JHE

    On plane wave and vortex-like solutions of noncommutative Maxwell-Chern-Simons theory

    Full text link
    We investigate the spectrum of the gauge theory with Chern-Simons term on the noncommutative plane, a modification of the description of the Quantum Hall fluid recently proposed by Susskind. We find a series of the noncommutative massive ``plane wave'' solutions with polarization dependent on the magnitude of the wave-vector. The mass of each branch is fixed by the quantization condition imposed on the coefficient of the noncommutative Chern-Simons term. For the radially symmetric ansatz a vortex-like solution is found and investigated. We derive a nonlinear difference equation describing these solutions and we find their asymptotic form. These excitations should be relevant in describing the Quantum Hall transitions between plateaus and the end transition to the Hall Insulator.Comment: 17 pages, LaTeX (JHEP), 1 figure, added references, version accepted to JHE
    • …
    corecore