14 research outputs found

    Reflection of neuroblastoma intratumor heterogeneity in the new OHC-NB1 disease model

    Get PDF
    Accurate modeling of intratumor heterogeneity presents a bottleneck against drug testing. Flexibility in a preclinical platform is also desirable to support assessment of different endpoints. We established the model system, OHC-NB1, from a bone marrow metastasis from a patient diagnosed with MYCN-amplified neuroblastoma and performed whole-exome sequencing on the source metastasis and the different models and passages during model development (monolayer cell line, 3D spheroid culture and subcutaneous xenograft tumors propagated in mice). OHC-NB1 harbors a MYCN amplification in double minutes, 1p deletion, 17q gain and diploid karyotype, which persisted in all models. A total of 80-540 single-nucleotide variants (SNVs) was detected in each sample, and comparisons between the source metastasis and models identified 34 of 80 somatic SNVs to be propagated in the models. Clonal reconstruction using the combined copy number and SNV data revealed marked clonal heterogeneity in the originating metastasis, with 4 clones being reflected in the model systems. The set of OHC-NB1 models represents 43% of somatic SNVs and 23% of the cellularity in the originating metastasis with varying clonal compositions, indicating that heterogeneity is partially preserved in our model system

    Prognostic value of genetic alterations in children with first bone marrow relapse of childhood B-cell precursor acute lymphoblastic leukemia

    No full text
    Despite risk-adapted treatment, survival of children with relapse of acute lymphoblastic leukemia (ALL) remains poor compared with that of patients with initial diagnosis of ALL. Leukemia-associated genetic alterations may provide novel prognostic factors to refine present relapse treatment strategies. Therefore, we investigated the clinical relevance of 13 recurrent genetic alterations in 204 children treated uniformly for relapsed B-cell precursor ALL according to the ALL-REZ BFM 2002 protocol. The most common alterations were deletions of CDKN2A/2B, IKZF1, PAX5, ETV6, fusion of ETV6-RUNX1 and deletions and/or mutations of TP53. Multivariate analysis identified IKZF1 deletion and TP53 alteration as independent predictors of inferior outcome (P=0.002 and P=0.001). Next, we investigated how both alterations can improve the established risk stratification in relapsed ALL. Intermediate-risk relapse patients with low minimal residual disease are currently considered to have a good prognosis. In this group, deletion of IKZF1 and alteration of TP53 identify patients with significantly inferior outcome (P<0.001). In high-risk relapse patients, deletion of IKZF1 is strongly predictive of a second relapse after stem cell transplantation (P<0.001). We conclude that IKZF1 and TP53 represent relevant prognostic factors that should be considered in future risk assessment of children with relapsed ALL to indicate treatment intensification or intervention

    An extensive quality control and quality assurance (QC/QA) program significantly improves inter-laboratory concordance rates of flow-cytometric minimal residual disease assessment in acute lymphoblastic leukemia: An I-BFM-FLOW-network report

    Get PDF
    Monitoring of minimal residual disease (MRD) by flow cytometry (FCM) is a powerful prognostic tool for predicting outcomes in acute lymphoblastic leukemia (ALL). To apply FCM-MRD in large, collaborative trials, dedicated laboratory staff must be educated to concordantly high levels of expertise and their performance quality should be continuously monitored. We sought to install a unique and comprehensive training and quality control (QC) program involving a large number of reference laboratories within the international Berlin-Frankfurt-Münster (I-BFM) consortium, in order to complement the standardization of the methodology with an educational component and persistent quality control measures. Our QC and quality assurance (QA) program is based on four major cornerstones: (i) a twinning maturation program, (ii) obligatory participation in external QA programs (spiked sample send around, United Kingdom National External Quality Assessment Service (UK NEQAS)), (iii) regular participation in list-mode-data (LMD) file ring trials (FCM data file send arounds), and (iv) surveys of independent data derived from trial results. We demonstrate that the training of laboratories using experienced twinning partners, along with continuous educational feedback significantly improves the performance of laboratories in detecting and quantifying MRD in pediatric ALL patients. Overall, our extensive education and quality control program improved inter-laboratory concordance rates of FCM-MRD assessments and ultimately led to a very high conformity of risk estimates in independent patient cohorts
    corecore