726 research outputs found

    Study to minimize hydrogen embrittlement of ultrahigh-strength steels

    Get PDF
    Hydrogen-stress cracking in high-strength steels is influenced by hydrogen content of the material and its hydrogen absorption tendency. Non-embrittling cleaning, pickling, and electroplating processes are being studied. Protection from this hydrogen embrittlement is important to the aerospace and aircraft industries

    Literature review on pickling inhibitors and cadmium electroplating processes

    Get PDF
    Because introduction of hydrogen during bright-cadmium electroplating of high strength steels causes hydrogen-stress cracking, a program was undertaken to evaluate various processes and materials. Report describes effectiveness of inhibitors for reducing hydrogen absorption by steels

    A review of the literature on pickling inhibitors and cadmium electroplating processes to minimize hydrogen absorption by ultrahigh-strength steels

    Get PDF
    Literature review on pickling inhibitors and cadmium electroplating processes to minimize hydrogen absorption by ultrahigh strength steel

    A study of hydrogen embrittlement of various alloys Annual summary report, 24 Jun. 1965 - 23 Jun. 1966

    Get PDF
    Hydrogen embrittlement of alloy cathodically charged and notched tensile metal

    Review of literature on hydrogen embrittlement

    Get PDF
    Hydrogen embrittlement in high strength iron-base and nickel-base alloys and titaniu

    Renormalization Group Study of the soliton mass on the (lambda Phi^4)_{1+1} lattice model

    Full text link
    We compute, on the (λΦ4)1+1(\lambda \Phi^4)_{1+1} model on the lattice, the soliton mass by means of two very different numerical methods. First, we make use of a ``creation operator'' formalism, measuring the decay of a certain correlation function. On the other hand we measure the shift of the vacuum energy between the symmetric and the antiperiodic systems. The obtained results are fully compatible. We compute the continuum limit of the mass from the perturbative Renormalization Group equations. Special attention is paid to ensure that we are working on the scaling region, where physical quantities remain unchanged along any Renormalization Group Trajectory. We compare the continuum value of the soliton mass with its perturbative value up to one loop calculation. Both quantities show a quite satisfactory agreement. The first is slightly bigger than the perturbative one; this may be due to the contributions of higher order corrections.Comment: 19 pages, preprint DFTUZ/93/0

    Domain walls and perturbation theory in high temperature gauge theory: SU(2) in 2+1 dimensions

    Get PDF
    We study the detailed properties of Z_2 domain walls in the deconfined high temperature phase of the d=2+1 SU(2) gauge theory. These walls are studied both by computer simulations of the lattice theory and by one-loop perturbative calculations. The latter are carried out both in the continuum and on the lattice. We find that leading order perturbation theory reproduces the detailed properties of these domain walls remarkably accurately even at temperatures where the effective dimensionless expansion parameter, g^2/T, is close to unity. The quantities studied include the surface tension, the action density profiles, roughening and the electric screening mass. It is only for the last quantity that we find an exception to the precocious success of perturbation theory. All this shows that, despite the presence of infrared divergences at higher orders, high-T perturbation theory can be an accurate calculational tool.Comment: 75 pages, LaTeX, 14 figure
    corecore