8 research outputs found

    Patient-specific coronary artery supply territory AHA diagrams

    No full text
    The American Heart Association proposed a 17-segment model for the segmentation of the left ventricle together with a mapping from each segment to a supplying coronary artery. This proposal is based on population averages. Several studies have confirmed the inaccuracy of this mapping due to large anatomical variations of the coronary arteries among individuals. Several proposals have been made for a different mapping between the 17 segments and the coronary arteries

    Patient-specific coronary artery supply territory AHA diagrams

    No full text
    The American Heart Association proposed a 17-segment model for the segmentation of the left ventricle together with a mapping from each segment to a supplying coronary artery. This proposal is based on population averages. Several studies have confirmed the inaccuracy of this mapping due to large anatomical variations of the coronary arteries among individuals. Several proposals have been made for a different mapping between the 17 segments and the coronary arteries

    The volumetric bull's eye plot

    No full text
    The bull's eye plot is a commonly used schematic for the visualization of quantitative late enhancement cardiac MRI data. It gives an intuitive overview of the viability of the entire left ventricular myocardium in a single diagram. However, common implementations do not provide a continuous transition between slices and provide poor or no information about the exact location and transmurality of non-viable tissue

    Application-oriented extensions of profile flags

    No full text
    This paper discusses two applications of probing dense volumetric data for MR orthopedics and dynamic contrast enhanced MRI mammography. In order not to reduce the context information and to extract the essential part of the data, we apply Profile Flags. A Profile Flag is a 3D glyph for probing and annotating the volumetric data. The first application area deals with visualization of T2 profiles for interactive inspection of knee cartilage and detection of lesions. In the second application, we present the usability the Profile Flags for measuring of time-signal profiles for a set of time-dependent MR volumes. Several extensions of the basic Profile Flag concept are described in detail and discussed. These extensions include selection of a set of profiles based on spatial as well as curve differences, automatic positioning of the Profile Flags, and adaptation for probing of time-varying volumetric data. Additionally, we include the evaluation of the used methods by our medical partners
    corecore