178 research outputs found

    Osteoarthritis year in review 2015: mechanics

    Get PDF
    Motivated by the conceptual framework of multi-scale biomechanics, this narrative review highlights recent major advances with a focus on gait and joint kinematics, then tissue-level mechanics, cell mechanics and mechanotransduction, matrix mechanics, and finally the nanoscale mechanics of matrix macromolecules. A literature review was conducted from January 2014 to April 2015 using PubMed to identify major developments in mechanics related to osteoarthritis (OA). Studies of knee adduction, flexion, rotation, and contact mechanics have extended our understanding of medial compartment loading. In turn, advances in measurement methodologies have shown how injuries to both the meniscus and ligaments, together, can alter joint kinematics. At the tissue scale, novel findings have emerged regarding the mechanics of the meniscus as well as cartilage superficial zone. Moving to the cell level, poroelastic and poro-viscoelastic mechanisms underlying chondrocyte deformation have been reported, along with the response to osmotic stress. Further developments have emerged on the role of calcium signaling in chondrocyte mechanobiology, including exciting findings on the function of mechanically activated cation channels newly found to be expressed in chondrocytes. Finally, AFM-based nano-rheology systems have enabled studies of thin murine tissues and brush layers of matrix molecules over a wide range of loading rates including high rates corresponding to impact injury. With OA acknowledged to be a disease of the joint as an organ, understanding mechanical behavior at each length scale helps to elucidate the connections between cell biology, matrix biochemistry and tissue structure/function that may play a role in the pathomechanics of OA.National Institutes of Health (U.S.) (Grant AR060331

    Coculture of bovine cartilage with synovium and fibrous joint capsule increases aggrecanase and matrix metalloproteinase activity

    Get PDF
    Background A hallmark of osteoarthritis is increased proteolytic cleavage of aggrecan. Cross talk between cartilage and the synovium + joint capsule (SJC) can drive cartilage degradation by activating proteases in both tissues. We investigated aggrecan proteolysis patterns in cartilage explants using a physiologically relevant explant model of joint injury combining cartilage mechanical compression and coincubation with SJC. Methods Bovine cartilage explants were untreated; coincubated with SJC; or subjected to mechanical injury and coincubated with SJC, mechanical injury alone, or mechanical injury and incubated with tumor necrosis factor-α (TNF-α). To compare the patterns of aggrecan proteolysis between 6 h and 16 days, release of sulfated glycosaminoglycans and specific proteolytic aggrecan fragments into medium or remaining in cartilage explants was measured by dimethylmethylene blue and Western blot analysis. Results Aggrecanase activity toward aggrecan was observed in all conditions, but it was directed toward the TEGE↓ARGS interglobular domain (IGD) site only when cartilage was coincubated with SJC or TNF-α. Matrix metalloproteinase (MMP) activity at the aggrecan IGD site (IPES↓FFGV) was not detected when cartilage was exposed to TNF-α (up to 6 days), but it was in all other conditions. Compared with when bovine cartilage was left untreated or subjected to mechanical injury alone, additional aggrecan fragment types were released into medium and proteolysis of aggrecan started at an earlier time when SJC was present. Conclusions Indicative of different proteolytic pathways for aggrecan degradation, the SJC increases both aggrecanase and MMP activity toward aggrecan, whereas TNF-α inhibits MMP activity against the IGD of aggrecan.National Institutes of Health (U.S.) (AR060331

    Modeling the Insulin-Like Growth Factor System in Articular Cartilage

    Get PDF
    IGF signaling is involved in cell proliferation, differentiation and apoptosis in a wide range of tissues, both normal and diseased, and so IGF-IR has been the focus of intense interest as a promising drug target. In this computational study on cartilage, we focus on two questions: (i) what are the key factors influencing IGF-IR complex formation, and (ii) how might cells regulate IGF-IR complex formation? We develop a reaction-diffusion computational model of the IGF system involving twenty three parameters. A series of parametric and sensitivity studies are used to identify the key factors influencing IGF signaling. From the model we predict the free IGF and IGF-IR complex concentrations throughout the tissue. We estimate the degradation half-lives of free IGF-I and IGFBPs in normal cartilage to be 20 and 100 mins respectively, and conclude that regulation of the IGF half-life, either directly or indirectly via extracellular matrix IGF-BP protease concentrations, are two critical factors governing the IGF-IR complex formation in the cartilage. Further we find that cellular regulation of IGF-II production, the IGF-IIR concentration and its clearance rate, all significantly influence IGF signaling. It is likely that negative feedback processes via regulation of these factors tune IGF signaling within a tissue, which may help explain the recent failures of single target drug therapies aimed at modifying IGF signaling.National Health and Medical Research Council (Australia) (APP1051455

    Age-related nanostructural and nanomechanical changes of individual human cartilage aggrecan monomers and their glycosaminoglycan side chains

    Get PDF
    The nanostructure and nanomechanical properties of aggrecan monomers extracted and purified from human articular cartilage from donors of different ages (newborn, 29 and 38 year old) were directly visualized and quantified via atomic force microscopy (AFM)-based imaging and force spectroscopy. AFM imaging enabled direct comparison of full length monomers at different ages. The higher proportion of aggrecan fragments observed in adult versus newborn populations is consistent with the cumulative proteolysis of aggrecan known to occur in vivo. The decreased dimensions of adult full length aggrecan (including core protein and glycosaminoglycan (GAG) chain trace length, end-to-end distance and extension ratio) reflect altered aggrecan biosynthesis. The demonstrably shorter GAG chains observed in adult full length aggrecan monomers, compared to newborn monomers, also reflects markedly altered biosynthesis with age. Direct visualization of aggrecan subjected to chondroitinase and/or keratanase treatment revealed conformational properties of aggrecan monomers associated with chondroitin sulfate (CS) and keratan sulfate (KS) GAG chains. Furthermore, compressive stiffness of chemically end-attached layers of adult and newborn aggrecan was measured in various ionic strength aqueous solutions. Adult aggrecan was significantly weaker in compression than newborn aggrecan even at the same total GAG density and bath ionic strength, suggesting the importance of both electrostatic and non-electrostatic interactions in nanomechanical stiffness. These results provide molecular-level evidence of the effects of age on the conformational and nanomechanical properties of aggrecan, with direct implications for the effects of aggrecan nanostructure on the age-dependence of cartilage tissue biomechanical and osmotic properties.National Science Foundation (U.S.) (Grant CMMI-0758651)National Institutes of Health (U.S.) (Grant AR33236)National Institutes of Health (U.S.) (Grant AR60331)United States. Dept. of Energy (National Security Science and Engineering Faculty Fellowship Grant N00244-09-1-0064)Shriners North Americ

    Charge based intra-cartilage delivery of single dose dexamethasone using Avidin nano-carriers suppresses cytokine-induced catabolism long term

    Get PDF
    Objective: Avidin exhibits ideal characteristics for targeted intra-cartilage drug delivery: its small size and optimal positive charge enable rapid penetration through full-thickness cartilage and electrostatic binding interactions that give long half-lives in vivo. Here we conjugated Avidin with dexamethasone (DEX) and tested the hypothesis that single-dose Avidin-delivered DEX can ameliorate catabolic effects in cytokine-challenged cartilage relevant to post-traumatic OA. Methods: Avidin was covalently conjugated with DEX using fast (ester) and slow, pH-sensitive release (hydrazone) linkers. DEX release kinetics from these conjugates was characterized using 3H-DEX-Avidin (scintillation counting). Cartilage explants treated with IL-1α were cultured with or without Avidin-DEX conjugates and compared to soluble DEX. Sulfated-glycosaminoglycan (sGAG) loss and biosynthesis rates were measured using DMMB assay and 35S-incorporation, respectively. Chondrocyte viability was measured using fluorescence staining. Results: Ester linker released DEX from Avidin significantly faster than hydrazone under physiological buffer conditions. Single dose Avidin-DEX suppressed cytokine-induced sGAG loss over 3-weeks, rescued IL-1α-induced cell death, and restored sGAG synthesis levels without causing cytotoxicity. The two Avidin-DEX conjugates in 1:1 combination (fast:slow) had the most prominent bioactivity compared to single dose soluble-DEX, which had a shorter-lived effect and thus needed continuous replenishment throughout the culture period to ameliorate catabolic effects. Conclusion: Intra-cartilage drug delivery remains inadequate as drugs rapidly clear from the joint, requiring multiple injections or sustained release of high doses in synovial fluid. A single dose of Avidin-conjugated drug enables rapid uptake and sustained delivery inside cartilage at low intratissue doses, and potentially can minimize unwanted drug exposure to other joint tissues.Deshpande Center for Technological InnovationNational Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Award DMR-1419807

    Poroelasticity is the dominant energy dissipation mechanism in cartilage at the nano-scale

    Get PDF
    Recent studies of micro- and nano-scale mechanics of cartilage and chondrocyte pericellular matrix have begun to relate matrix molecular structure to its mechanical response. AFM-based indentation has revealed rate-dependent stiffness at the micro-scale. While multi-scale elastic behavior has been studied, and poro-viscoelastic properties have been extensively documented at the tissue-level, time-dependent behavior and energy dissipation mechanisms of cartilage matrix at the nano-scale are not well understood. Here, we used AFM-based dynamic compression in conjunction with poroelastic finite element modeling to study the frequency-dependent behavior of cartilage using nano-scale oscillatory displacement amplitudes. We introduce the characteristic frequency f[subscript peak] at which the maximum energy dissipation occurs as an important parameter to characterize matrix time-dependent behavior. Use of micron-sized AFM probe tips with nano-scale oscillatory displacements over a 3-decade frequency range enabled clear identification of this characteristic frequency f[subscript peak]. The length-scale dependence of poroelastic behavior combined with judicious choice of probe tip geometry revealed flow-dependent and flow-independent behavior during matrix displacement amplitudes on the order of macromolecular dimensions and intermolecular pore-sizes.National Science Foundation (U.S.) (Grant CMMI-0758651)National Institutes of Health (U.S.) (National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) Grant AR33236

    Size- and speed-dependent mechanical behavior in living mammalian cytoplasm

    Get PDF
    Active transport in the cytoplasm plays critical roles in living cell physiology. However, the mechanical resistance that intracellular compartments experience, which is governed by the cytoplasmic material property, remains elusive, especially its dependence on size and speed. Here we use optical tweezers to drag a bead in the cytoplasm and directly probe the mechanical resistance with varying size a and speed V. We introduce a method, combining the direct measurement and a simple scaling analysis, to reveal different origins of the size- and speed-dependent resistance in living mammalian cytoplasm. We show that the cytoplasm exhibits size-independent viscoelasticity as long as the effective strain rate V/a is maintained in a relatively low range (0.1 s −1 < V/a < 2 s −1 ) and exhibits size-dependent poroelasticity at a high effective strain rate regime (5 s −1 < V/a < 80 s −1 ). Moreover, the cytoplasmic modulus is found to be positively correlated with only V/a in the viscoelastic regime but also increases with the bead size at a constant V/a in the poroelastic regime. Based on our measurements, we obtain a full-scale state diagram of the living mammalian cytoplasm, which shows that the cytoplasm changes from a viscous fluid to an elastic solid, as well as from compressible material to incompressible material, with increases in the values of two dimensionless parameters, respectively. This state diagram is useful to understand the underlying mechanical nature of the cytoplasm in a variety of cellular processes over a broad range of speed and size scales. Keywords: cell mechanics; poroelasticity; viscoelasticity; cytoplasmic state diagra

    Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREB-dependent, fluid flow shear stress-induced signaling pathways

    Get PDF
    Lubricin is a secreted proteoglycan encoded by the Prg4 locus that is abundantly expressed by superficial zone articular chondrocytes and has been noted to both be sensitive to mechanical loading and protect against the development of osteoarthritis. In this study, we document that running induces maximal expression of Prg4 in the superficial zone of knee joint articular cartilage in a COX-2-dependent fashion, which correlates with augmented levels of phospho-S133 CREB and increased nuclear localization of CREB-regulated transcriptional coactivators (CRTCs) in this tissue. Furthermore, we found that fluid flow shear stress (FFSS) increases secretion of extracellular PGE2, PTHrP, and ATP (by epiphyseal chondrocytes), which together engage both PKA- and Ca++-regulated signaling pathways that work in combination to promote CREB-dependent induction of Prg4, specifically in superficial zone articular chondrocytes. Because running and FFSS both boost Prg4 expression in a COX-2-dependent fashion, our results suggest that mechanical motion may induce Prg4 expression in the superficial zone of articular cartilage by engaging the same signaling pathways activated in vitro by FFSS that promote CREB-dependent gene expression in this tissue.National Institute of Arthritis and Musculoskeletal and Skin Diseases (U.S.) (Grant AR60331

    Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis

    Get PDF
    Local drug delivery into cartilage remains a challenge due to its dense extracellular matrix of negatively charged proteoglycans enmeshed within a collagen fibril network. The high negative fixed charge density of cartilage offers the unique opportunity to utilize electrostatic interactions to augment transport, binding and retention of drug carriers. With the goal of developing particle-based drug delivery mechanisms for treating post-traumatic osteoarthritis, our objectives were, first, to determine the size range of a variety of solutes that could penetrate and diffuse through normal cartilage and enzymatically treated cartilage to mimic early stages of OA, and second, to investigate the effects of electrostatic interactions on particle partitioning, uptake and binding within cartilage using the highly positively charged protein, Avidin, as a model. Results showed that solutes having a hydrodynamic diameter ≤10 nm can penetrate into the full thickness of cartilage explants while larger sized solutes were trapped in the tissue's superficial zone. Avidin had a 400-fold higher uptake than its neutral same-sized counterpart, NeutrAvidin, and >90% of the absorbed Avidin remained within cartilage explants for at least 15 days. We report reversible, weak binding (K[subscript D] ~ 150 μm) of Avidin to intratissue sites in cartilage. The large effective binding site density (N[subscript T] ~ 2920 μm) within cartilage matrix facilitates Avidin's retention, making its structure suitable for particle based drug delivery into cartilage

    Potent inhibition of cartilage biosynthesis by coincubation with joint capsule through an IL-1-independent pathway

    Get PDF
    The reason for the increased risk for development of osteoarthritis (OA) after acute joint trauma is not well understood, but the mechanically injured cartilage may be more susceptible to degradative mediators secreted by other tissues in the joint. To establish a model for such interactions, we coincubated bovine cartilage tissue explants together with normal joint capsule and found a profound (∼70%) reduction in cartilage proteoglycan biosynthesis. This reduction is due to release by the joint capsule of a heat-labile and non-toxic factor. Surprisingly, while cultured synovium is a canonical source of interleukin-1 (IL-1), blockade either by soluble IL-1 type II receptor (sIL-1r) or IL-1 receptor antagonist (IL-1RA) had no effect. Combined blockade of IL-1 and tumor necrosis factor α (TNF-α) also had no effect. To support the clinical relevance of the findings, we harvested joint capsule from post-mortem human knees. Human joint capsule from a normal adult knee also released a substance that caused an ∼40% decrease in cartilage proteoglycan biosynthesis. Furthermore, this inhibition was not affected by IL-1 blockade with either sIL-1r or IL-1RA. These results suggest that joint capsule tissue from a normal knee joint can release an uncharacterized cytokine that potently inhibits cartilage biosynthetic activity by an IL-1- and TNF-independent pathway.Whitaker FoundationGlaxoSmithKlineNational Institutes of Health (U.S.) (grant AR-45779)National Institutes of Health (U.S.). Specialized Centers Of Interdisciplinary Research (grant ARP50-39239
    • …
    corecore