12 research outputs found
The phase diagram for the binary system indium-tellurium and electrical properties of In3Te5
The phase diagram for the binary system indium-tellurium has been clarified and corrected, particularly in the region near the composition In2Te3. This material is a potentially important semiconductor, either alone or in combination with other materials, such as Cu3Te, Ag2Te, CdTe, etc.Results of this study were obtained by correlating differential thermal analysis (DTA), chemical analyses of zone-refined ingots, microscopic analysis, and X-ray determinations.Two new phases have been identified, and the compositions of three other phases have been determined more precisely. (1) The phase In2Te (33.3 at. %Te) does not exist; the composition should be In9Te7 (43 at. %Te). The peritectic decomposition temperature is 462[deg]C. (2) The phase InTe (50.0 at. % Te) has the composition In30Te31 (50.8 at. % Te). The congruent melting point is 696[deg]C. (3) A new phase In3Te4 (57.0 at. % Te) has been found having a peritectic decomposition temperature of 650[deg]C. (4) The phase In2Te3 (60.0 at. % Te) has the composition In27Te40 (59.7 at.% Te). The congruent melting point is 667[deg]C, and there is a phase transition at about 550[deg]C. (5) A new phase In3Te5 (62.5 at. % Te) has been found, having a peritectic decomposition temperature of 625[deg]C, and a phase transition at 463[deg]C. (6) The phase In2Te5 (71.5 at. % Te) was prepared. (7) Electrical measurements on In3Te5 show a large conductivity increase associated with the phase transition at 463[deg]C. (8) Electrical measurements on zone refined In2Te3, were non-reproducible.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32121/1/0000172.pd
NODAL Variants Are Associated With a Continuum of Laterality Defects From Simple D-Transposition of the Great Arteries to Heterotaxy
BACKGROUND: NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-β/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects.
METHODS: We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences.
RESULTS: Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G \u3e A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model.
CONCLUSION: Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model
Is it a match? a novel method of evaluating medical school success
Background: Medical education program evaluation allows for curricular improvements to both Undergraduate (UME) and Graduate Medical Education (GME). UME programs are left with little more than match rates and self-report to evaluate success of graduates in The Match. Objective: This manuscript shares a novel method of program evaluation through a systematic assessment of Match outcomes. Design: Surveys were developed and distributed to Program Training Directors (PTDs) at our institution to classify residency programs into which our UME graduates matched using an ordinal response scale and open-ended responses. Outcomes-based measures for UME graduates were collected and analyzed. The relationship between PTD survey data and UME graduates’ outcomes were explored. Open-ended response data were qualitatively analyzed using iterative cycles of coding and identifying themes. Results: The PTD survey response rate was 100%. 71% of our graduates matched to programs ranked as ‘elite’ (36%) or ‘top’ (35%) tier. The mean total number of ‘Honors’ grades achieved by UME graduates was 2.6. Data showed that graduates entering elite and top GME programs did not consistently earn Honors in their associated clerkships. A positive correlation was identified between USMLE Step 1 score, number of honors, and residency program rankings for a majority of the programs. Qualitative analysis identified research, faculty, and clinical exposure as necessary characteristics of ‘elite’ programs:. Factors considered by PTDs in the rating of programs included reputation, faculty, research, national presence and quality of graduates. Conclusions: This study describes a novel outcomes-based method of evaluating the success of UME programs. Results provided useful feedback about the quality of our UME program and its ability to produce graduates who match in highly-regarded GME programs. The findings from this study can benefit Clerkship Directors, Student Affairs and Curriculam Deans, and residency PTDs as they help students determine their competitiveness forspecialties and specific residency programs
NODAL variants are associated with a continuum of laterality defects from simple D-transposition of the great arteries to heterotaxy
Abstract Background NODAL signaling plays a critical role in embryonic patterning and heart development in vertebrates. Genetic variants resulting in perturbations of the TGF-β/NODAL signaling pathway have reproducibly been shown to cause laterality defects in humans. To further explore this association and improve genetic diagnosis, the study aims to identify and characterize a broader range of NODAL variants in a large number of individuals with laterality defects. Methods We re-analyzed a cohort of 321 proband-only exomes of individuals with clinically diagnosed laterality congenital heart disease (CHD) using family-based, rare variant genomic analyses. To this cohort we added 12 affected subjects with known NODAL variants and CHD from institutional research and clinical cohorts to investigate an allelic series. For those with candidate contributory variants, variant allele confirmation and segregation analysis were studied by Sanger sequencing in available family members. Array comparative genomic hybridization and droplet digital PCR were utilized for copy number variants (CNV) validation and characterization. We performed Human Phenotype Ontology (HPO)-based quantitative phenotypic analyses to dissect allele-specific phenotypic differences. Results Missense, nonsense, splice site, indels, and/or structural variants of NODAL were identified as potential causes of heterotaxy and other laterality defects in 33 CHD cases. We describe a recurrent complex indel variant for which the nucleic acid secondary structure predictions implicate secondary structure mutagenesis as a possible mechanism for formation. We identified two CNV deletion alleles spanning NODAL in two unrelated CHD cases. Furthermore, 17 CHD individuals were found (16/17 with known Hispanic ancestry) to have the c.778G > A:p.G260R NODAL missense variant which we propose reclassification from variant of uncertain significance (VUS) to likely pathogenic. Quantitative HPO-based analyses of the observed clinical phenotype for all cases with p.G260R variation, including heterozygous, homozygous, and compound heterozygous cases, reveal clustering of individuals with biallelic variation. This finding provides evidence for a genotypic-phenotypic correlation and an allele-specific gene dosage model. Conclusion Our data further support a role for rare deleterious variants in NODAL as a cause for sporadic human laterality defects, expand the repertoire of observed anatomical complexity of potential cardiovascular anomalies, and implicate an allele specific gene dosage model
Additional file 1 of NODAL variants are associated with a continuum of laterality defects from simple D-transposition of the great arteries to heterotaxy
Additional file 1: Table S1. Molecular, Cohort, and Phenotypic information on all cases with NODAL variants. Table S2. Inclusion criteria and description of included patient groups. Table S3. Detailed clinical information for all 33 CHD cases in the study. Table S4. CHD gene list analyzed in our cohort. Table S5. HPO terms used for all CHD cases in the study
