40 research outputs found
Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand
Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Taylor & Francis for personal use, not for redistribution. The definitive version was published in New Zealand Journal of Geology and Geophysics 54 (2011): 329-339, doi:10.1080/00288306.2011.589860.Multibeam bathymetric surveys east of the South Island of New Zealand present images of submarine volcanoes and pockmarks west of Urry Knolls on the Chatham Rise, and evidence of submarine erosion on the southern margin of the Chatham Rise. Among numerous volcanic cones, diameters of the largest reach ~2000 m, and some stand as high as 400 m above the surrounding seafloor. The tops of most of the volcanic cones are flat, with hints of craters, and some with asymmetric shapes may show flank collapses. There are hints of both northeast-southwest and northwest-southeast alignments of volcanoes, but no associated faulting is apparent. Near and to the west of these volcanoes, huge pockmarks, some more than ~1 km in diameter, disrupt bottom topography. Pockmarks in this region seem to be confined to sea floor shallower than ~1200 m, but we see evidence of deeper pockmarks at water depths of up to 2100 m on profiles crossing the Bounty Trough. The pockmark field on the Chatham Rise seems to be bounded on the south by a trough near 1200 m depth; like others, we presume that contour currents have eroded the margin and created the trough.This research was supported by the National Science Foundation under grants EAR-0409564, EAR-0409609, and EAR-0409835.2012-08-3
Gas hydrate and P-Wave Velocity Distribution in the Yaquina Basin at the Peruvian margin
The lower boundary of the methane hydrate stability zone in continental margin sedi-mentsis often marked by a strong, phase reversed reflection subparallel to the seafloor,called the bottom simulating reflector (BSR). High resolution multichannel seismic(MCS) data from the Yaquina Basin offshore Peru at 8 deg S show a BSR that is vary-inglaterally in amplitude as well as in continuity. The amplitudes of the reflectionsabove the BSR also vary with the appearance of the BSR. Where the BSR is strong,the reflections above it are weaker compared to areas where the BSR is weak. Andalthough the strong part of the BSR is underlain immediately by strong reflections,reflections several hundred meters beneath the BSR appear weaker than those wherethe BSR is weak. This variation indicates significant heterogeneity in the distribu-tionof gas and gas hydrate in this area. Chemoherms observed at the Yaquina Basinsea floor indicate the presence of free gas in the sediments up to the seafloor. Thepresence of gas and gas hydrate within the sediment sequence significantly influencesthe P-wave velocity in the affected layers. Therefore a detailed analysis of velocityvariations enables to understand the apparently different conditions for the formationof gas hydrate along the BSR and the migration paths of the free gas. Ocean bot-tomseismometer (OBS) data from profiles coincident with the MCS data can providesuch detailed velocity depth information. Velocity analysis from OBS data included2D-ray tracing and 1D-interval-velocity analysis by means of DIX-inversion. In orderto find a trade-off between vertical resolution and minimization of errors caused bythe sensitivity of the DIX formula to velocity variations in thin layers, the data haveundergone a Kirchhoff wave-equation datuming and adjacent coherence filtering wasapplied to the data to eliminate the one sided travel path through the water columnof the OBS-observations. The derived velocity structure confirms the interpretation ofthe reflection pattern in terms of gas and gas hydrate distribution
Seismic indications for free gas within the gas hydrate stability zone in the Yaquina Basin off Peru
MCS data from the Yaquina forearc basin off Peru reveal a complex distribution of gas and gas hydrate related reflections. Intricate lateral variations of the reflection pattern at the assumed base of the GHSZ in terms of continuity, reflection amplitude, and signal attenuation underneath are observed, as well as the occurrence of paleo-BSR. Phase reversed reflections at an erosional unconformity above the BSR indicate free gas within the GHSZ. In order to further constrain the interpretation of the observed reflection pattern we calculated the velocity distribution along the MCS line from high-resolution ocean bottom hydrophone recordings with two independent methods. The results from 2D-forward modelling and interactive velocity analysis show consistentresults. They exhibit a low velocity layer almost directly beneath the seafloor. Another low velocity layer with less than 1.5 km/s is present between the unconformity and the BSR.. In the vicinity and beneath prominent chemoherms, high velocities have been observed between the BSR and seafloor. Heat flux values calculated on the basis of the velocity-depth functions increase with decreasing amplitude of the bottom simulating reflector and peak near chemoherms. These results suggest a model of the Yaquina Basin where free gas is present under parts of the BSR, and within the hydrate stability zone, particularly under the sea floor and under the erosional unconformity. The higher interval velocities near and beneath the chemoherms are suspected to be caused either by thick gas hydrate lenses or a significant amount of precipitated carbonate within the sediment or a combination of both. The hypothesis of a paleo-BSR that reflects the uplift of the base of the GHSZ caused by the deposition of a particular sediment sequence is supported by the estimated heat flux values