3 research outputs found

    Voting as a Signaling Device

    Get PDF
    In this paper, citizens vote in order to influence the election outcome and in order to signal their unobserved characteristics to others. The model is one of rational voting and generates the following predictions: (i) The paradox of not voting does not arise, because the benefit of voting does not vanish with population size. (ii) Turnout in elections is positively related to the importance of social interactions. (iii) Voting may exhibit bandwagon effects and small changes in the electoral incentives may generate large changes in turnout due to signaling effects. (iv) Signaling incentives increase the sensitivity of turnout to voting incentives in communities with low opportunity cost of social interaction, while the opposite is true for communities with high cost of social interaction. Therefore, the model predicts less volatile turnout for the latter type of communities

    Quantitative imaging of bone remodeling in patients with a unicompartmental joint unloading knee implant (ATLAS Knee System)—effect of metal artifacts on a SPECT-CT-based quantification

    No full text
    Background!#!SPECT-CT using radiolabeled phosphonates is considered a standard for assessing bone metabolism (e.g., in patients with osteoarthritis of knee joints). However, SPECT can be influenced by metal artifacts in CT caused by endoprostheses affecting attenuation correction. The current study examined the effects of metal artifacts in CT of a specific endoprosthesis design on quantitative hybrid SPECT-CT imaging. The implant was positioned inside a phantom homogenously filled with activity (955 MBq !##!Results!#!Significant effects caused by CT metal artifacts on attenuation-corrected SPECT were observed for the different slice positions, reconstructed slice thicknesses of CT data, and pitch and CT-reconstruction kernels used (all, p < 0.0001). Based on the optimization, a set of three protocols was identified minimizing the effect of CT metal artifacts on SPECT data. Regarding the reference region, the activity concentration in the anatomically correlated volume was underestimated by 8.9-10.1%. A slight inhomogeneity of the reconstructed activity concentration was detected inside the regions with a median up to 0.81% (p < 0.0001). Using an X-ray tube current of 40 mA showed the best result, balancing quantification and CT exposure.!##!Conclusion!#!The results of this study demonstrate the need for the evaluation of SPECT-CT protocols in prosthesis imaging. Phantom experiments demonstrated the possibility for quantitative SPECT-CT of bone turnover in a specific prosthesis design. Meanwhile, a systematic bias caused by metal implants on quantitative SPECT data has to be considered

    A multicentre comparison of quantitative (90)Y PET/CT for dosimetric purposes after radioembolization with resin microspheres : The QUEST Phantom Study

    No full text
    corecore