7 research outputs found

    Using Fludarabine to Reduce Exposure to Alkylating Agents in Children with Sickle Cell Disease Receiving Busulfan, Cyclophosphamide, and Antithymocyte Globulin Transplant Conditioning: Results of a Dose De-Escalation Trial

    Get PDF
    AbstractHigh-dose busulfan, cyclophosphamide, and antithymocyte globulin (BU-CY-ATG) is the most commonly used conditioning regimen in HLA-matched related hematopoietic cell transplantation for children with sickle cell disease. Disease-free survival with this regimen is now approximately 95%; however, it produces significant morbidity. We hypothesized we could create a less toxic regimen by adding fludarabine (FLU) to BU-CY-ATG and reduce the dosages of busulfan and cyclophosphamide. We conducted a multicenter dose de-escalation trial with the objective of decreasing the doses of busulfan and cyclophosphamide by 50% and 55%, respectively. Using day +28 donor-predominant chimerism as a surrogate endpoint for sustained engraftment, we completed the first 2 of 4 planned levels, enrolling 6 patients at each and reducing the total dose of cyclophosphamide from 200 mg/kg to 90 mg/kg. On the third level, which involved a reduction of i.v. busulfan from 12.8 mg/kg to 9.6 mg/kg, the first 2 patients had host-predominant T cell chimerism, which triggered trial-stopping rules. All 14 patients survive disease-free. No patients suffered severe regimen-related toxicity. Our results suggest BU-FLU-CY-ATG using lower dose CY could be a less toxic yet effective regimen. Further evaluation of this regimen in a full-scale clinical trial is warranted

    In Vivo T Cell Costimulation Blockade with Abatacept for Acute Graft-versus-Host Disease Prevention: A First-in-Disease Trial

    Get PDF
    AbstractWe performed a first-in-disease trial of in vivo CD28:CD80/86 costimulation blockade with abatacept for acute graft-versus-host disease (aGVHD) prevention during unrelated-donor hematopoietic cell transplantation (HCT). All patients received cyclosporine/methotrexate plus 4 doses of abatacept (10 mg/kg/dose) on days −1, +5, +14, +28 post-HCT. The feasibility of adding abatacept, its pharmacokinetics, pharmacodynamics, and its impact on aGVHD, infection, relapse, and transplantation-related mortality (TRM) were assessed. All patients received the planned abatacept doses, and no infusion reactions were noted. Compared with a cohort of patients not receiving abatacept (the StdRx cohort), patients enrolled in the study (the ABA cohort) demonstrated significant inhibition of early CD4+ T cell proliferation and activation, affecting predominantly the effector memory (Tem) subpopulation, with 7- and 10-fold fewer proliferating and activated CD4+ Tem cells, respectively, at day+28 in the ABA cohort compared with the StdRx cohort (P < .01). The ABA patients demonstrated a low rate of aGVHD, despite robust immune reconstitution, with 2 of 10 patients diagnosed with grade II-IV aGVHD before day +100, no deaths from infection, no day +100 TRM, and with 7 of 10 evaluable patients surviving (median follow-up, 16 months). These results suggest that costimulation blockade with abatacept can significantly affect CD4+ T cell proliferation and activation post-transplantation, and may be an important adjunct to standard immunoprophylaxis for aGVHD in patients undergoing unrelated-donor HCT

    Using Fludarabine to Reduce Exposure to Alkylating Agents in Children with Sickle Cell Disease Receiving Busulfan, Cyclophosphamide, and Antithymocyte Globulin Transplant Conditioning: Results of a Dose De-Escalation Trial

    Get PDF
    AbstractHigh-dose busulfan, cyclophosphamide, and antithymocyte globulin (BU-CY-ATG) is the most commonly used conditioning regimen in HLA-matched related hematopoietic cell transplantation for children with sickle cell disease. Disease-free survival with this regimen is now approximately 95%; however, it produces significant morbidity. We hypothesized we could create a less toxic regimen by adding fludarabine (FLU) to BU-CY-ATG and reduce the dosages of busulfan and cyclophosphamide. We conducted a multicenter dose de-escalation trial with the objective of decreasing the doses of busulfan and cyclophosphamide by 50% and 55%, respectively. Using day +28 donor-predominant chimerism as a surrogate endpoint for sustained engraftment, we completed the first 2 of 4 planned levels, enrolling 6 patients at each and reducing the total dose of cyclophosphamide from 200 mg/kg to 90 mg/kg. On the third level, which involved a reduction of i.v. busulfan from 12.8 mg/kg to 9.6 mg/kg, the first 2 patients had host-predominant T cell chimerism, which triggered trial-stopping rules. All 14 patients survive disease-free. No patients suffered severe regimen-related toxicity. Our results suggest BU-FLU-CY-ATG using lower dose CY could be a less toxic yet effective regimen. Further evaluation of this regimen in a full-scale clinical trial is warranted

    Transplantation outcomes for severe combined immunodeficiency, 2000-2009.

    No full text
    BackgroundThe Primary Immune Deficiency Treatment Consortium was formed to analyze the results of hematopoietic-cell transplantation in children with severe combined immunodeficiency (SCID) and other primary immunodeficiencies. Factors associated with a good transplantation outcome need to be identified in order to design safer and more effective curative therapy, particularly for children with SCID diagnosed at birth.MethodsWe collected data retrospectively from 240 infants with SCID who had received transplants at 25 centers during a 10-year period (2000 through 2009).ResultsSurvival at 5 years, freedom from immunoglobulin substitution, and CD3+ T-cell and IgA recovery were more likely among recipients of grafts from matched sibling donors than among recipients of grafts from alternative donors. However, the survival rate was high regardless of donor type among infants who received transplants at 3.5 months of age or younger (94%) and among older infants without prior infection (90%) or with infection that had resolved (82%). Among actively infected infants without a matched sibling donor, survival was best among recipients of haploidentical T-cell-depleted transplants in the absence of any pretransplantation conditioning. Among survivors, reduced-intensity or myeloablative pretransplantation conditioning was associated with an increased likelihood of a CD3+ T-cell count of more than 1000 per cubic millimeter, freedom from immunoglobulin substitution, and IgA recovery but did not significantly affect CD4+ T-cell recovery or recovery of phytohemagglutinin-induced T-cell proliferation. The genetic subtype of SCID affected the quality of CD3+ T-cell recovery but not survival.ConclusionsTransplants from donors other than matched siblings were associated with excellent survival among infants with SCID identified before the onset of infection. All available graft sources are expected to lead to excellent survival among asymptomatic infants. (Funded by the National Institute of Allergy and Infectious Diseases and others.)

    Phase II Trial of Costimulation Blockade With Abatacept for Prevention of Acute GVHD

    No full text
    PURPOSE: Severe (grade 3-4) acute graft-versus-host disease (AGVHD) is a major cause of death after unrelated-donor (URD) hematopoietic cell transplant (HCT), resulting in particularly high mortality after HLA-mismatched transplantation. There are no approved agents for AGVHD prevention, underscoring the critical unmet need for novel therapeutics. ABA2 was a phase II trial to rigorously assess safety, efficacy, and immunologic effects of adding T-cell costimulation blockade with abatacept to calcineurin inhibitor (CNI)/methotrexate (MTX)-based GVHD prophylaxis, to test whether abatacept could decrease AGVHD. METHODS: ABA2 enrolled adults and children with hematologic malignancies under two strata: a randomized, double-blind, placebo-controlled stratum (8/8-HLA-matched URD), comparing CNI/MTX plus abatacept with CNI/MTX plus placebo, and a single-arm stratum (7/8-HLA-mismatched URD) comparing CNI/MTX plus abatacept versus CNI/MTX CIBMTR controls. The primary end point was day +100 grade 3-4 AGVHD, with day +180 severe-AGVHD-free-survival (SGFS) a key secondary end point. Sample sizes were calculated using a higher type-1 error (0.2) as recommended for phase II trials, and were based on predicting that abatacept would reduce grade 3-4 AGVHD from 20% to 10% (8/8s) and 30% to 10% (7/8s). ABA2 enrolled 142 recipients (8/8s, median follow-up = 716 days) and 43 recipients (7/8s, median follow-up = 708 days). RESULTS: In 8/8s, grade 3-4 AGVHD was 6.8% (abatacept) versus 14.8% (placebo) (P = .13, hazard ratio = 0.45). SGFS was 93.2% (CNI/MTX plus abatacept) versus 82% (CNI/MTX plus placebo, P = .05). In the smaller 7/8 cohort, grade 3-4 AGVHD was 2.3% (CNI/MTX plus abatacept, intention-to-treat population), which compared favorably with a nonrandomized matched cohort of CNI/MTX (30.2%, P < .001), and the SGFS was better (97.7% v 58.7%, P < .001). Immunologic analysis revealed control of T-cell activation in abatacept-treated patients. CONCLUSION: Adding abatacept to URD HCT was safe, reduced AGVHD, and improved SGFS. These results suggest that abatacept may substantially improve AGVHD-related transplant outcomes, with a particularly beneficial impact on HLA-mismatched HCT

    Transplantation Outcomes for Severe Combined Immunodeficiency, 2000–2009

    No full text
    BACKGROUND: The Primary Immune Deficiency Treatment Consortium was formed to analyze the results of hematopoietic-cell transplantation in children with severe combined immunodeficiency (SCID) and other primary immunodeficiencies. Factors associated with a good transplantation outcome need to be identified in order to design safer and more effective curative therapy, particularly for children with SCID diagnosed at birth. METHODS: We collected data retrospectively from 240 infants with SCID who had received transplants at 25 centers during a 10-year period (2000 through 2009). RESULTS: Survival at 5 years, freedom from immunoglobulin substitution, and CD3+ T-cell and IgA recovery were more likely among recipients of grafts from matched sibling donors than among recipients of grafts from alternative donors. However, the survival rate was high regardless of donor type among infants who received transplants at 3.5 months of age or younger (94%) and among older infants without prior infection (90%) or with infection that had resolved (82%). Among actively infected infants without a matched sibling donor, survival was best among recipients of haploidentical T-cell–depleted transplants in the absence of any pretransplantation conditioning. Among survivors, reduced-intensity or myeloablative pre-transplantation conditioning was associated with an increased likelihood of a CD3+ T-cell count of more than 1000 per cubic millimeter, freedom from immunoglobulin substitution, and IgA recovery but did not significantly affect CD4+ T-cell recovery or recovery of phytohemagglutinin-induced T-cell proliferation. The genetic subtype of SCID affected the quality of CD3+ T-cell recovery but not survival. CONCLUSIONS: Transplants from donors other than matched siblings were associated with excellent survival among infants with SCID identified before the onset of infection. All available graft sources are expected to lead to excellent survival among asymptomatic infants. (Funded by the National Institute of Allergy and Infectious Diseases and others.
    corecore