52 research outputs found

    Generalized Kac-Moody Algebras from CHL dyons

    Full text link
    We provide evidence for the existence of a family of generalized Kac-Moody(GKM) superalgebras, G_N, whose Weyl-Kac-Borcherds denominator formula gives rise to a genus-two modular form at level N, Delta_{k/2}(Z), for (N,k)=(1,10), (2,6), (3,4), and possibly (5,2). The square of the automorphic form is the modular transform of the generating function of the degeneracy of CHL dyons in asymmetric Z_N-orbifolds of the heterotic string compactified on T^6. The new generalized Kac-Moody superalgebras all arise as different `automorphic corrections' of the same Lie algebra and are closely related to a generalized Kac-Moody superalgebra constructed by Gritsenko and Nikulin. The automorphic forms, Delta_{k/2}(Z), arise as additive lifts of Jacobi forms of (integral) weight k/2 and index 1/2. We note that the orbifolding acts on the imaginary simple roots of the unorbifolded GKM superalgebra, G_1 leaving the real simple roots untouched. We anticipate that these superalgebras will play a role in understanding the `algebra of BPS states' in CHL compactifications.Comment: LaTeX, 35 pages; v2: improved referencing and discussion; typos corrected; v3 [substantial revision] 44 pages, modularity of additive lift proved, product representation of the forms also given; further references adde

    The Kodaira dimension of the moduli of K3 surfaces

    Full text link
    The moduli space of polarised K3 surfaces of degree 2d is a quasi-projective variety of dimension 19. For general d very little has been known about the Kodaira dimension of these varieties. In this paper we present an almost complete solution to this problem. Our main result says that this moduli space is of general type for d>61 and for d=46,50,54,58,60.Comment: 47 page

    Asymptotic degeneracy of dyonic N=4 string states and black hole entropy

    Full text link
    It is shown that the asymptotic growth of the microscopic degeneracy of BPS dyons in four-dimensional N=4 string theory captures the known corrections to the macroscopic entropy of four-dimensional extremal black holes. These corrections are subleading in the limit of large charges and originate both from the presence of interactions in the effective action quadratic in the Riemann tensor and from non-holomorphic terms. The presence of the non-holomorphic corrections and their contribution to the thermodynamic free energy is discussed. It is pointed out that the expression for the microscopic entropy, written as a function of the dilaton field, is stationary at the horizon by virtue of the attractor equations.Comment: 16 pages Late

    CHL Dyons and Statistical Entropy Function from D1-D5 System

    Get PDF
    We give a proof of the recently proposed formula for the dyon spectrum in CHL string theories by mapping it to a configuration of D1 and D5-branes and Kaluza-Klein monopole. We also give a prescription for computing the degeneracy as a systematic expansion in inverse powers of charges. The computation can be formulated as a problem of extremizing a duality invariant statistical entropy function whose value at the extremum gives the logarithm of the degeneracy. During this analysis we also determine the locations of the zeroes and poles of the Siegel modular forms whose inverse give the dyon partition function in the CHL models.Comment: LaTeX file, 48 pages; v2: typos correcte

    Borcherds symmetries in M-theory

    Get PDF
    It is well known but rather mysterious that root spaces of the EkE_k Lie groups appear in the second integral cohomology of regular, complex, compact, del Pezzo surfaces. The corresponding groups act on the scalar fields (0-forms) of toroidal compactifications of M theory. Their Borel subgroups are actually subgroups of supergroups of finite dimension over the Grassmann algebra of differential forms on spacetime that have been shown to preserve the self-duality equation obeyed by all bosonic form-fields of the theory. We show here that the corresponding duality superalgebras are nothing but Borcherds superalgebras truncated by the above choice of Grassmann coefficients. The full Borcherds' root lattices are the second integral cohomology of the del Pezzo surfaces. Our choice of simple roots uses the anti-canonical form and its known orthogonal complement. Another result is the determination of del Pezzo surfaces associated to other string and field theory models. Dimensional reduction on TkT^k corresponds to blow-up of kk points in general position with respect to each other. All theories of the Magic triangle that reduce to the EnE_n sigma model in three dimensions correspond to singular del Pezzo surfaces with A8−nA_{8-n} (normal) singularity at a point. The case of type I and heterotic theories if one drops their gauge sector corresponds to non-normal (singular along a curve) del Pezzo's. We comment on previous encounters with Borcherds algebras at the end of the paper.Comment: 30 pages. Besides expository improvements, we exclude by hand real fermionic simple roots when they would naively aris

    A Farey tale for N=4 dyons

    Full text link
    We study exponentially suppressed contributions to the degeneracies of extremal black holes. Within Sen's quantum entropy function framework and focusing on extremal black holes with an intermediate AdS3 region, we identify an infinite family of semi-classical AdS2 geometries which can contribute effects of order exp(S_0/c), where S_0 is the Bekenstein-Hawking-Wald entropy and c is an integer greater than one. These solutions lift to the extremal limit of the SL(2,Z) family of BTZ black holes familiar from the "black hole Farey tail". We test this understanding in N=4 string vacua, where exact dyon degeneracies are known to be given by Fourier coefficients of Siegel modular forms. We relate the sum over poles in the Siegel upper half plane to the Farey tail expansion, and derive a "Farey tale" expansion for the dyon partition function. Mathematically, this provides a (formal) lift from Hilbert modular forms to Siegel modular forms with a pole at the diagonal divisor.Comment: 31 page

    Diffusive dynamics and jamming in ensembles of robots with variable friction

    Get PDF
    In the present paper, we experimentally study the diffusive dynamics in ensembles of self-propelled and self-rotating bristle-bots. Considering the dependence of the system dynamics on the packing density of robots as well as on the friction between individual robots, we show that the friction slightly affects the diffusive dynamics but leads to a significant change in the jamming transition corresponding to the formation of rigid clusters of robots

    How Do Black Holes Predict the Sign of the Fourier Coefficients of Siegel Modular Forms?

    Get PDF
    Single centered supersymmetric black holes in four dimensions have spherically symmetric horizon and hence carry zero angular momentum. This leads to a specific sign of the helicity trace index associated with these black holes. Since the latter are given by the Fourier expansion coefficients of appropriate meromorphic modular forms of Sp(2,Z) or its subgroup, we are led to a specific prediction for the signs of a subset of these Fourier coefficients which represent contributions from single centered black holes only. We explicitly test these predictions for the modular forms which compute the index of quarter BPS black holes in heterotic string theory on T^6, as well as in Z_N CHL models for N=2,3,5,7.Comment: LaTeX file, 17 pages, 1 figur

    Proteogenomic analysis of human colon cancer reveals new therapeutic opportunities

    Get PDF
    We performed the first proteogenomic study on a prospectively collected colon cancer cohort. Comparative proteomic and phosphoproteomic analysis of paired tumor and normal adjacent tissues produced a catalog of colon cancer-associated proteins and phosphosites, including known and putative new biomarkers, drug targets, and cancer/testis antigens. Proteogenomic integration not only prioritized genomically inferred targets, such as copy-number drivers and mutation-derived neoantigens, but also yielded novel findings. Phosphoproteomics data associated Rb phosphorylation with increased proliferation and decreased apoptosis in colon cancer, which explains why this classical tumor suppressor is amplified in colon tumors and suggests a rationale for targeting Rb phosphorylation in colon cancer. Proteomics identified an association between decreased CD8 T cell infiltration and increased glycolysis in microsatellite instability-high (MSI-H) tumors, suggesting glycolysis as a potential target to overcome the resistance of MSI-H tumors to immune checkpoint blockade. Proteogenomics presents new avenues for biological discoveries and therapeutic development
    • 

    corecore