661 research outputs found

    The Igusa modular forms and ``the simplest'' Lorentzian Kac--Moody algebras

    Full text link
    We find automorphic corrections for the Lorentzian Kac--Moody algebras with the simplest generalized Cartan matrices of rank 3: A_{1,0} = 2 0 -1 0 2 -2 -1 -2 2 and A_{1,I} = 2 -2 -1 -2 2 -1 -1 -1 2 For A_{1,0} this correction is given by the Igusa Sp_4(Z)-modular form \chi_{35} of weight 35, and for A_{1,I} by a Siege modular form of weight 30 with respect to a 2-congruence subgroup. We find infinite product or sum expansions for these forms. Our method of construction of \chi_{35} leads to the direct construction of Siegel modular forms by infinite product expansions, whose divisors are the Humbert surfaces with fixed discriminants. Existence of these forms was proved by van der Geer in 1982 using some geometrical consideration. We announce a list of all hyperbolic symmetric generalized Cartan matrices A of rank 3 such that A has elliptic or parabolic type, A has a lattice Weyl vector, and A contains the affine submatrix \tilde{A}_1.Comment: 40 pages, no figures. AMS-Te

    Reflection groups in hyperbolic spaces and the denominator formula for Lorentzian Kac--Moody Lie algebras

    Full text link
    This is a continuation of our "Lecture on Kac--Moody Lie algebras of the arithmetic type" \cite{25}. We consider hyperbolic (i.e. signature (n,1)(n,1)) integral symmetric bilinear form S:M×MZS:M\times M \to {\Bbb Z} (i.e. hyperbolic lattice), reflection group WW(S)W\subset W(S), fundamental polyhedron \Cal M of WW and an acceptable (corresponding to twisting coefficients) set P({\Cal M})\subset M of vectors orthogonal to faces of \Cal M (simple roots). One can construct the corresponding Lorentzian Kac--Moody Lie algebra {\goth g}={\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) which is graded by MM. We show that \goth g has good behavior of imaginary roots, its denominator formula is defined in a natural domain and has good automorphic properties if and only if \goth g has so called {\it restricted arithmetic type}. We show that every finitely generated (i.e. P({\Cal M}) is finite) algebra {\goth g}^{\prime\prime}(A(S,W_1,P({\Cal M}_1))) may be embedded to {\goth g}^{\prime\prime}(A(S,W,P({\Cal M}))) of the restricted arithmetic type. Thus, Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type is a natural class to study. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type have the best automorphic properties for the denominator function if they have {\it a lattice Weyl vector ρ\rho}. Lorentzian Kac--Moody Lie algebras of the restricted arithmetic type with generalized lattice Weyl vector ρ\rho are called {\it elliptic}Comment: Some corrections in Sects. 2.1, 2.2 were done. They don't reflect on results and ideas. 31 pages, no figures. AMSTe

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page
    corecore