3 research outputs found

    Conditional Targeting of the DNA Repair Enzyme hOGG1 into Mitochondria

    Get PDF
    Oxidative damage to mitochondrial DNA (mtDNA) has been suggested to be a key factor in the etiologies of many diseases and in the normal process of aging. Although the presence of a repair system to remove this damage has been demonstrated, the mechanisms involved in this repair have not been well defined. In an effort to better understand the physiological role of recombinant 8-oxoguanine DNA glycosylase/apurinic lyase (OGG1) in mtDNA repair, we constructed an expression vector containing the gene for OGG1 downstream of the mitochondrial localization sequence from manganese-superoxide dismutase. This gene construct was placed under the control of a tetracycline-regulated promoter. Transfected cells that conditionally expressed OGG1 in the absence of the tetracycline analogue doxycycline and targeted this recombinant protein to mitochondria were generated. Western blots of mitochondrial extracts from vector- and OGG1-transfected clones with and without doxycycline revealed that removal of doxycycline for 4 days caused an approximate 8-fold increase in the amount of OGG1 protein in mitochondria. Enzyme activity assays and DNA repair studies showed that the doxycycline-dependent recombinant OGG1 is functional. Functional studies revealed that cells containing recombinant OGG1 were more proficient at repairing oxidative damage in their mtDNA, and this increased repair led to increased cellular survival following oxidative stress

    Endonuclease III and endonuclease VIII conditionally targeted into mitochondria enhance mitochondrial DNA repair and cell survival following oxidative stress

    No full text
    Mitochondrial DNA (mtDNA) is exposed to reactive oxygen species (ROS) produced during oxidative phosphorylation. Accumulation of several kinds of oxidative lesions, including oxidized pyrimidines, in mtDNA may lead to structural genomic alterations, mitochondrial dysfunction and associated degenerative diseases. In Escherichia coli, oxidative pyrimidines are repaired by endonuclease III (EndoIII) and endonuclease VIII (EndoVIII). To determine whether the overexpression of two bacterial glycosylase/AP lyases which predominantly remove oxidized pyrimidines from DNA, could improve mtDNA repair and cell survival, we constructed vectors containing sequences for the EndoIII and EndoVIII downstream of the mitochondrial targeting sequence (MTS) from manganese superoxide dismutase (MnSOD) and placed them under the control of the tetracycline (Tet)-response element. Successful integrations of MTS–EndoIII or MTS–EndoVIII into the HeLa Tet-On genome were confirmed by Southern blot. Western blots of mitochondrial extracts from MTS–EndoIII and MTS–EndoVIII clones revealed that the recombinant proteins are targeted into mitochondria and their expressions are doxycycline (Dox) dependent. Enzyme activity assays and mtDNA repair studies showed that the Dox-dependent expressions of MTS–EndoIII and MTS–EndoVIII are functional, and both MTS–EndoIII and MTS–EndoVIII (Dox+) clones were significantly more proficient at repair of oxidative damage in their mtDNA. This enhanced repair led to increased cellular resistance to oxidative stress
    corecore