10 research outputs found

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-ÎșB in B cells and the transcription of NF-ÎșB–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies.</p

    Gene expression profiling of early intervertebral disc degeneration reveals a down-regulation of canonical Wnt signaling and caveolin-1 expression: implications for development of regenerative strategies

    Get PDF
    INTRODUCTION: Early degeneration of the intervertebral disc (IVD) involves a change in cellular differentiation from notochordal cells (NCs) in the nucleus pulposus (NP) to chondrocyte-like cells (CLCs). The purpose of this study was to investigate the gene expression profiles involved in this process using NP tissue from non-chondrodystrophic and chondrodystrophic dogs, a species with naturally occurring IVD degeneration. METHODS: Dual channel DNA microarrays were used to compare 1) healthy NP tissue containing only NCs (NC-rich), 2) NP tissue with a mixed population of NCs and CLCs (Mixed), and 3) NP tissue containing solely CLCs (CLC-rich) in both non-chondrodystrophic and chondrodystrophic dogs. Based on previous reports and the findings of the microarray analyses, canonical Wnt signaling was further evaluated using qPCR of relevant Wnt target genes. We hypothesized that caveolin-1, a regulator of Wnt signaling that showed significant changes in gene expression in the microarray analyses, played a significant role in early IVD degeneration. Caveolin-1 expression was investigated in IVD tissue sections and in cultured NCs. To investigate the significance of Caveolin-1 in IVD health and degeneration, the NP of 3-month-old Caveolin-1 knock-out mice was histopathologically evaluated and compared with the NP of wild-type mice of the same age. RESULTS: Early IVD degeneration involved significant changes in numerous pathways, including Wnt/ÎČ-catenin signaling. With regard to Wnt/ÎČ-catenin signaling, axin2 gene expression was significantly higher in chondrodystrophic dogs compared with non-chondrodystrophic dogs. IVD degeneration involved significant down-regulation of axin2 gene expression. IVD degeneration involved significant down-regulation in Caveolin-1 gene and protein expression. NCs showed abundant caveolin-1 expression in vivo and in vitro, whereas CLCs did not. The NP of wild-type mice was rich in viable NCs, whereas the NP of Caveolin-1 knock-out mice contained chondroid-like matrix with mainly apoptotic, small, rounded cells. CONCLUSIONS: Early IVD degeneration involves down-regulation of canonical Wnt signaling and Caveolin-1 expression, which appears to be essential to the physiology and preservation of NCs. Therefore, Caveolin-1 may be regarded an exciting target for developing strategies for IVD regeneration

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-?B in B cells and the transcription of NF-?B–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies

    B-cell targeting with anti-CD38 daratumumab:implications for differentiation and memory responses

    Get PDF
    B cell–targeted therapies, such as CD20-targeting mAbs, deplete B cells but do not target the autoantibody-producing plasma cells (PCs). PC-targeting therapies such as daratumumab (anti-CD38) form an attractive approach to treat PC-mediated diseases. CD38 possesses enzymatic and receptor capabilities, which may impact a range of cellular processes including proliferation and differentiation. However, very little is known whether and how CD38 targeting affects B-cell differentiation, in particular for humans beyond cancer settings. Using in-depth in vitro B-cell differentiation assays and signaling pathway analysis, we show that CD38 targeting with daratumumab demonstrated a significant decrease in proliferation, differentiation, and IgG production upon T cell–dependent B-cell stimulation. We found no effect on T-cell activation or proliferation. Furthermore, we demonstrate that daratumumab attenuated the activation of NF-ÎșB in B cells and the transcription of NF-ÎșB–targeted genes. When culturing sorted B-cell subsets with daratumumab, the switched memory B-cell subset was primarily affected. Overall, these in vitro data elucidate novel non-depleting mechanisms by which daratumumab can disturb humoral immune responses. Affecting memory B cells, daratumumab may be used as a therapeutic approach in B cell–mediated diseases other than the currently targeted malignancies.</p

    Evaluation of agreement and correlation of results obtained with MRI-based and macroscopic observation-based grading schemes when used to assess intervertebral disk degeneration in cats

    Full text link
    OBJECTIVE: To evaluate agreement in results obtained with an MRI-based grading scheme and a macroscopic observation–based grading scheme when used to assess intervertebral disk (IVD) degeneration in cats. SAMPLE: 241 MRI and 143 macroscopic images of singular IVDs in 44 client-owned cats (40 cadaveric and 4 live). PROCEDURES: Singular images of IVDs were obtained of live cats admitted for treatment of suspected neurologic disease (MRI images of IVDs) and of cadavers of cats euthanized for reasons unrelated to spinal disease (MRI and macroscopic images of IVDs) at the Small Animal Hospital, Vetsuisse Faculty, Zurich, Switzerland, between January 12, 2015, and October 19, 2015. The IVD images were randomized and evaluated twice by 4 observers for each grading scheme. Inter- and intraobserver reliability for the grading schemes was assessed with Cohen weighted Îș analysis. Agreement and correlation between results obtained with the 2 grading schemes were determined with Cohen weighted Îș and Spearman correlation coefficient (ρ) analyses, respectively. RESULTS: Inter- and intraobserver agreement between results was substantial to almost perfect (mean weighted Îș, 0.66 to 0.83 and 0.71 to 0.86, respectively) for the MRI-based grading scheme and moderate to substantial (mean weighted Îș, 0.42 to 0.80 and 0.65 to 0.79, respectively) for the macroscopic observation–based grading scheme. Between the 2 grading schemes, agreement in results was moderate (mean ± SE weighted Îș, 0.56 ± 0.05), and the correlation was strong (ρ = 0.73). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the MRI-based and macroscopic observation–based grading schemes used in the present study could be used reliably for classifying IVD degeneration in cats. (Am J Vet Res 2020;81:309–316

    Evaluation of agreement and correlation of results obtained with MRI-based and macroscopic observation-based grading schemes when used to assess intervertebral disk degeneration in cats

    No full text
    OBJECTIVE: To evaluate agreement in results obtained with an MRI-based grading scheme and a macroscopic observation-based grading scheme when used to assess intervertebral disk (IVD) degeneration in cats. SAMPLE: 241 MRI and 143 macroscopic images of singular IVDs in 44 client-owned cats (40 cadaveric and 4 live). PROCEDURES: Singular images of IVDs were obtained of live cats admitted for treatment of suspected neurologic disease (MRI images of IVDs) and of cadavers of cats euthanized for reasons unrelated to spinal disease (MRI and macroscopic images of IVDs) at the Small Animal Hospital, Vetsuisse Faculty, Zurich, Switzerland, between January 12, 2015, and October 19, 2015. The IVD images were randomized and evaluated twice by 4 observers for each grading scheme. Inter- and intraobserver reliability for the grading schemes was assessed with Cohen weighted Îș analysis. Agreement and correlation between results obtained with the 2 grading schemes were determined with Cohen weighted Îș and Spearman correlation coefficient (ρ) analyses, respectively. RESULTS: Inter- and intraobserver agreement between results was substantial to almost perfect (mean weighted Îș, 0.66 to 0.83 and 0.71 to 0.86, respectively) for the MRI-based grading scheme and moderate to substantial (mean weighted Îș, 0.42 to 0.80 and 0.65 to 0.79, respectively) for the macroscopic observation-based grading scheme. Between the 2 grading schemes, agreement in results was moderate (mean ± SE weighted Îș, 0.56 ± 0.05), and the correlation was strong (ρ = 0.73). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the MRI-based and macroscopic observation-based grading schemes used in the present study could be used reliably for classifying IVD degeneration in cats

    The Myth of Fibroid Degeneration in the Canine Intervertebral Disc : A Histopathological Comparison of Intervertebral Disc Degeneration in Chondrodystrophic and Nonchondrodystrophic Dogs

    No full text
    Since the seminal work by Hans-Jörgen Hansen in 1952, it has been assumed that intervertebral disc (IVD) degeneration in chondrodystrophic (CD) dogs involves chondroid metaplasia of the nucleus pulposus, whereas in nonchondrodystrophic (NCD) dogs, fibrous metaplasia occurs. However, more recent studies suggest that IVD degeneration in NCD and CD dogs is more similar than originally thought. Therefore, the aim of this study was to compare the histopathology of IVD degeneration in CD and NCD dogs. IVDs with various grades of degeneration (Thompson grade I-III, n = 7 per grade) from both CD and NCD dogs were used (14 CD and 18 NCD dogs, 42 IVDs in total). Sections were scored according to a histological scoring scheme for canine IVD degeneration, including evaluation of the presence of fibrocyte-like cells in the nucleus pulposus. In CD dogs, the macroscopically non-degenerated nucleus pulposus contained mainly chondrocyte-like cells, whereas the non-degenerated nucleus pulposus of NCD dogs mainly contained notochordal cells. The histopathological changes in degenerated discs were similar in CD and NCD dogs and resembled chondroid metaplasia. Fibrocytes were not seen in the nucleus pulposus, indicating that fibrous degeneration of the IVD was not present in any of the evaluated grades of degeneration. In conclusion, intervertebral disc degeneration was characterized by chondroid metaplasia of the nucleus pulposus in both NCD and CD dogs. These results revoke the generally accepted concept that NCD and CD dogs suffer from a different type of IVD degeneration, in veterinary literature often referred to as chondroid or fibroid degeneration, and we suggest that chondroid metaplasia should be used to describe the tissue changes in the IVD in both breed types

    Evaluation of agreement and correlation of results obtained with MRI-based and macroscopic observation-based grading schemes when used to assess intervertebral disk degeneration in cats

    No full text
    OBJECTIVE: To evaluate agreement in results obtained with an MRI-based grading scheme and a macroscopic observation-based grading scheme when used to assess intervertebral disk (IVD) degeneration in cats. SAMPLE: 241 MRI and 143 macroscopic images of singular IVDs in 44 client-owned cats (40 cadaveric and 4 live). PROCEDURES: Singular images of IVDs were obtained of live cats admitted for treatment of suspected neurologic disease (MRI images of IVDs) and of cadavers of cats euthanized for reasons unrelated to spinal disease (MRI and macroscopic images of IVDs) at the Small Animal Hospital, Vetsuisse Faculty, Zurich, Switzerland, between January 12, 2015, and October 19, 2015. The IVD images were randomized and evaluated twice by 4 observers for each grading scheme. Inter- and intraobserver reliability for the grading schemes was assessed with Cohen weighted Îș analysis. Agreement and correlation between results obtained with the 2 grading schemes were determined with Cohen weighted Îș and Spearman correlation coefficient (ρ) analyses, respectively. RESULTS: Inter- and intraobserver agreement between results was substantial to almost perfect (mean weighted Îș, 0.66 to 0.83 and 0.71 to 0.86, respectively) for the MRI-based grading scheme and moderate to substantial (mean weighted Îș, 0.42 to 0.80 and 0.65 to 0.79, respectively) for the macroscopic observation-based grading scheme. Between the 2 grading schemes, agreement in results was moderate (mean ± SE weighted Îș, 0.56 ± 0.05), and the correlation was strong (ρ = 0.73). CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the MRI-based and macroscopic observation-based grading schemes used in the present study could be used reliably for classifying IVD degeneration in cats

    The Myth of Fibroid Degeneration in the Canine Intervertebral Disc: A Histopathological Comparison of Intervertebral Disc Degeneration in Chondrodystrophic and Nonchondrodystrophic Dogs

    No full text
    Since the seminal work by Hans-Jörgen Hansen in 1952, it has been assumed that intervertebral disc (IVD) degeneration in chondrodystrophic (CD) dogs involves chondroid metaplasia of the nucleus pulposus, whereas in nonchondrodystrophic (NCD) dogs, fibrous metaplasia occurs. However, more recent studies suggest that IVD degeneration in NCD and CD dogs is more similar than originally thought. Therefore, the aim of this study was to compare the histopathology of IVD degeneration in CD and NCD dogs. IVDs with various grades of degeneration (Thompson grade I-III, n = 7 per grade) from both CD and NCD dogs were used (14 CD and 18 NCD dogs, 42 IVDs in total). Sections were scored according to a histological scoring scheme for canine IVD degeneration, including evaluation of the presence of fibrocyte-like cells in the nucleus pulposus. In CD dogs, the macroscopically non-degenerated nucleus pulposus contained mainly chondrocyte-like cells, whereas the non-degenerated nucleus pulposus of NCD dogs mainly contained notochordal cells. The histopathological changes in degenerated discs were similar in CD and NCD dogs and resembled chondroid metaplasia. Fibrocytes were not seen in the nucleus pulposus, indicating that fibrous degeneration of the IVD was not present in any of the evaluated grades of degeneration. In conclusion, intervertebral disc degeneration was characterized by chondroid metaplasia of the nucleus pulposus in both NCD and CD dogs. These results revoke the generally accepted concept that NCD and CD dogs suffer from a different type of IVD degeneration, in veterinary literature often referred to as chondroid or fibroid degeneration, and we suggest that chondroid metaplasia should be used to describe the tissue changes in the IVD in both breed types
    corecore