12 research outputs found

    Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Get PDF
    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultra-slippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions - able to operate in dynamic, extreme environments - not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through an infinite range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials - as long-term stable interfaces yet in their fully liquid state - are likely to transform surface design everywhere from medicine to architecture to energy infrastructure.Engineering and Applied Science

    Mobile Interfaces: Liquids as a Perfect Structural Material for Multifunctional, Antifouling Surfaces

    Get PDF
    Life creates some of its most robust, extreme surface materials not from solids but from liquids: a purely liquid interface, stabilized by underlying nanotexture, makes carnivorous plant leaves ultra-slippery, the eye optically perfect and dirt-resistant, our knees lubricated and pressure-tolerant, and insect feet reversibly adhesive and shape-adaptive. Novel liquid surfaces based on this idea have recently been shown to display unprecedented omniphobic, self-healing, anti-ice, antifouling, optical, and adaptive properties. In this Perspective, we present a framework and a path forward for developing and designing such liquid surfaces into sophisticated, versatile multifunctional materials. Drawing on concepts from solid materials design and fluid dynamics, we outline how the continuous dynamics, responsiveness, and multiscale patternability of a liquid surface layer can be harnessed to create a wide range of unique, active interfacial functions - able to operate in dynamic, extreme environments - not achievable with static solids. We discuss how, in partnership with the underlying substrate, the liquid surface can be programmed to adaptively and reversibly reconfigure from a defect-free, molecularly smooth, transparent interface through an infinite range of finely tuned liquid topographies in response to environmental stimuli. With nearly unlimited design possibilities and unmatched interfacial properties, liquid materials - as long-term stable interfaces yet in their fully liquid state - are likely to transform surface design everywhere from medicine to architecture to energy infrastructure.Engineering and Applied Science
    corecore