323 research outputs found
Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios
When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus
Venus climate stability and volcanic resurfacing rates
The climate of Venus is to a large degree controlled by the radiative properties of its massive atmosphere. In addition, outgassing due to volcanic activity, exospheric escape processes, and surface/atmosphere interactions may all be important in moderating the abundances of atmospheric CO2 and other volatiles. We have developed an evolutionary climate model for Venus using a systems approach that emphasizes feedbacks between elements in the climate system. Modules for atmospheric radiative transfer, surface/atmosphere interactions, tropospheric chemistry, and exospheric escape processes have so far been developed. Climate feedback loops result from interconnections between modules, in the form of the environmental parameters pressure, temperature, and atmospheric mixing ratios. The radiative transfer module has been implemented by using Rosseland mean opacities in a one dimensional grey radiative-convective model. The model has been solved for the static (time independent) case to determine climate equilibrium points. The dynamics of the model have also been explored by employing reaction/diffusion kinetics for possible surface atmosphere heterogeneous reactions over geologic timescales. It was found that under current conditions, the model predicts that the climate of Venus is at or near an unstable equilibrium point. The effects of constant rate volcanism and corresponding exsolution of volatiles on the stability of the climate model were also explored
Recommended from our members
A comparative analysis of Simplified General Circulation Models of the atmosphere of Venus
Within the context of a working group supported by ISSI (Bern, Switzerland), we have made an intercomparison work between Global Circulation Models using simpli?ed parameterizations for radiative forcing and other physical processes. Even with similar schemes and parameters, the different GCMs produce different circulations, illustrating interesting differences between dynamical model cores
Recommended from our members
Curie: Constraining Solar System Bombardment Using In Situ Radiometric Dating
The Curie mission would constrain the existence of the putative cataclysm by determining the age of samples directly sourced from the impact melt sheet of a major pre-Imbrium lunar basin. The measurements would also enable further understanding of lunar evolution by characterizing new lunar lithologies far from the Apollo and Luna landing sites, including the very low-Ti basalts in Mare Crisium and potential olivine rich lithologies in the margins of both Mare Nectaris and Mars Crisium. Equipped with a mass spectrometer and a LIBS, Curie would also be well-placed to survey volatile components of the lunar regolith, including surface-bound hydrogen
Constraining Solar System Bombardment Using In Situ Radiometric Dating
The leading, but contentious, model for lunar impact history includes a pronounced increase in impact events at around 3.9 Ga. This late heavy bombardment would have scarred Mars and the terrestrial planets, influenced the course of biologic evolution on the early Earth, and rearranged the very architecture of our Solar System. But what if it's not true? In the last decade, new observations and sample analyses have reinterpreted basin ages and "pulled the pin" on the cataclysm - we may only have the age of one large basin (Imbrium). The Curie mission would constrain the onset of the cataclysm by determining the age of a major pre-Imbrium lunar basin (Nectaris or Crisium), characterize new lunar lithologies far from the Apollo and Luna landing sites, including the basalts in the basin-filling maria and olivine-rich lithologies in the basin margins, and provide a unique vantage point to assess volatiles in the lunar regolith from dawn to dusk
‘You can’t stand on a corner and talk about it …’: Medicinal cannabis use, impression management and the analytical status of interviews
In this article, I examine how four medicinal cannabis users used impression management during in-depth, qualitative interviews to attend to self-presentational concerns. I examine the rhetorical strategies and narratives articulated by the participants while also attending to the role that I played in co-construction as the interviewer. Later I discuss how, although the participants’ accounts are occasioned by the interviews, they can still provide significant insights into the social worlds of the participants beyond the interviews. While discussions about whether to treat interviews as topic, resource or both are not new, I argue that we can treat interviews as both topic and resource because impression management is a product of the individual’s habitus and it and the accounts it produces are part of their social world
Ideal cardiovascular health, biomarkers, and coronary artery disease in persons with HIV
OBJECTIVE: To investigate relationships between Life\u27s Simple 7 (LS7), an assessment of cardiovascular health (CVH), and coronary plaque among people with HIV (PWH).
DESIGN: Cross-sectional.
METHODS: Coronary computed tomography angiography, immune/inflammatory biomarkers, and characterization of LS7 were collected among a subset of ART-treated PWH enrolled in REPRIEVE, a primary prevention trial. Analyses adjusted for cardiovascular disease risk (ASCVD score).
RESULTS: Median age of the 735 participants was 51(±6) years, 16% female, and median (Q1-Q3) CVD risk was 4.5% (2.6-6.9). Forty percent had poor (≤2 ideal components), 51% had intermediate (three or four ideal components), and only 9% had ideal CVH (≥5). Coronary plaque was present in 357 (49%); 167 (23%) had one or more vulnerable plaque features, 293 (40%) had noncalcified plaque, and 242 (35%) had a coronary artery calcium score \u3e0. All three phenotypes were increasingly more prevalent with poorer CVH and these relationships remained after adjusting for ASCVD risk. Poor CVH was associated with higher high-sensitivity C-reactive protein, oxidized low-density cholesterol, and interleukin-6. The relationship of LS7 to plaque remained after adjusting for these biomarkers.
CONCLUSIONS: Among PWH, poor CVH as measured by LS7 was associated with coronary plaque presence, vulnerable features, and calcification. LS7 was also associated with selected biomarkers; adjustment for these and ASCVD score reduced but did not eliminate LS7\u27s association with plaque, suggesting the possibility of additional protective mechanisms against atherogenesis and plaque remodeling. Clinical use of LS7 and further exploration of its relationships with coronary artery disease may enhance efforts to reduce cardiovascular morbidity and mortality in PWH.
CLINICAL TRIALS REGISTRATION: NCT02344290
HIV Protease Inhibitors Act as Competitive Inhibitors of the Cytoplasmic Glucose Binding Site of GLUTs with Differing Affinities for GLUT1 and GLUT4
The clinical use of several first generation HIV protease inhibitors (PIs) is associated with the development of insulin resistance. Indinavir has been shown to act as a potent reversible noncompetitive inhibitor of zero-trans glucose influx via direct interaction with the insulin responsive facilitative glucose transporter GLUT4. Newer drugs within this class have differing effects on insulin sensitivity in treated patients. GLUTs are known to contain two distinct glucose-binding sites that are located on opposite sides of the lipid bilayer. To determine whether interference with the cytoplasmic glucose binding site is responsible for differential effects of PIs on glucose transport, intact intracellular membrane vesicles containing GLUT1 and GLUT4, which have an inverted transporter orientation relative to the plasma membrane, were isolated from 3T3-L1 adipocytes. The binding of biotinylated ATB-BMPA, a membrane impermeable bis-mannose containing photolabel, was determined in the presence of indinavir, ritonavir, atazanavir, tipranavir, and cytochalasin b. Zero-trans 2-deoxyglucose transport was measured in both 3T3-L1 fibroblasts and primary rat adipocytes acutely exposed to these compounds. PI inhibition of glucose transport correlated strongly with the PI inhibition of ATB-BMPA/transporter binding. At therapeutically relevant concentrations, ritonavir was not selective for GLUT4 over GLUT1. Indinavir was found to act as a competitive inhibitor of the cytoplasmic glucose binding site of GLUT4 with a KI of 8.2 µM. These data establish biotinylated ATB-BMPA as an effective probe to quantify accessibility of the endofacial glucose-binding site in GLUTs and reveal that the ability of PIs to block this site differs among drugs within this class. This provides mechanistic insight into the basis for the clinical variation in drug-related metabolic toxicity
Growth hormone axis in chronic kidney disease
Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH–IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD
- …