5 research outputs found

    The relationship between body shape, body size and locomotor mode in extant lepidosaurs.

    Get PDF
    Despite historic work, the mechanisms and evolutionary drivers associated with the adoption of a facultatively bipedal locomotor mode in extant lepidosaurs are unclear. Recent work has provided insights into the biomechanical triggers of bipedal locomotion, but the associated anatomies are yet to be fully understood, particularly with regard to body size across Lepidosauria. Using a dataset derived from museum specimens, representing a range of lepidosaur body shapes, we highlight the differences between obligate quadrupeds and facultative bipeds within this group and demonstrate the value of non-caudal skeletal material in identifying facultative bipeds using osteology alone. We use multiple statistical approaches to identify trends across locomotor modes relative to body size. Body size has a significant effect upon body proportions across the two locomotor modes, especially in the hindlimbs. Forelimbs lengths do not differ significantly across locomotor modes for animals of similar body size, but distal hindlimbs are significantly longer in facultative bipeds. Interestingly, femoral length does not differ across locomotor modes of a similar body size. Our findings contrast with historical tropes, and are significant for future work attempting to identify the factors driving the evolution of a facultatively bipedal locomotor mode in Lepidosauria

    Testing for a facultative locomotor mode in the acquisition of archosaur bipedality

    Get PDF
    Bipedal locomotion is a defining characteristic of humans and birds and has a profound effect on how these groups interact with their environment. Results from extensive hominin research indicate that there exists an intermediate stage in hominin evolution—facultative bipedality—between obligate quadrupedality and obligate bipedality that uses both forms of locomotion. It is assumed that archosaur locomotor evolution followed this sequence of functional and hence character-state evolution. However, this assumption has never been tested in a broad phylogenetic context. We test whether facultative bipedality is a transitionary state of locomotor mode evolution in the most recent early archosaur phylogenies using maximum-likelihood ancestral state reconstructions for the first time. Across a total of seven independent transitions from quadrupedality to a state of obligate bipedality, we find that facultative bipedality exists as an intermediary mode only once, despite being acquired a total of 14 times. We also report more independent acquisitions of obligate bipedality in archosaurs than previously hypothesized, suggesting that locomotor mode is more evolutionarily fluid than expected and more readily experimented with in these reptiles

    The pelvis as an anatomical indicator for facultative bipedality and substrate use in lepidosaurs

    Get PDF
    Facultative bipedality is regarded as an enigmatic middle ground in the evolution of obligate bipedality and is associated with high mechanical demands in extant lepidosaurs. Traits linked with this phenomenon are largely associated with the caudal end of the animal: hindlimbs and tail. The articulation of the pelvis with both of these structures suggests a morphofunctional role in the use of a facultative locomotor mode. Using a three-dimensional geometric morphometric approach, we examine the pelvic osteology and associated functional implications for 34 species of extant lepidosaur. Anatomical trends associated with the use of a bipedal locomotor mode and substrate preferences are correlated and functionally interpreted based on musculoskeletal descriptions. Changes in pelvic osteology associated with a facultatively bipedal locomotor mode are similar to those observed in species preferring arboreal substrates, indicating shared functionality between these ecologies
    corecore