297 research outputs found

    X-ray Studies of Two Neutron Stars in 47 Tucanae: Toward Constraints on the Equation of State

    Full text link
    We report spectral and variability analysis of two quiescent low mass X-ray binaries (X5 and X7, previously detected with the ROSAT HRI) in a Chandra ACIS-I observation of the globular cluster 47 Tuc. X5 demonstrates sharp eclipses with an 8.666+-0.01 hr period, as well as dips showing an increased N_H column. The thermal spectra of X5 and X7 are well-modeled by unmagnetized hydrogen atmospheres of hot neutron stars. No hard power law component is required. A possible edge or absorption feature is identified near 0.64 keV, perhaps an OV edge from a hot wind. Spectral fits imply that X7 is significantly more massive than the canonical 1.4 \Msun neutron star mass, with M>1.8 \Msun for a radius range of 9-14 km, while X5's spectrum is consistent with a neutron star of mass 1.4 \Msun for the same radius range. Alternatively, if much of the X-ray luminosity is due to continuing accretion onto the neutron star surface, the feature may be the 0.87 keV rest-frame absorption complex (O VIII & other metal lines) intrinsic to the neutron star atmosphere, and a mass of 1.4 \Msun for X7 may be allowed.Comment: 16 pages, 7 figures, accepted by Ap

    Three Additional Quiescent Low-Mass X-ray Binary Candidates in 47 Tucanae

    Full text link
    We identify through their X-ray spectra one certain (W37) and two probable (W17 and X4) quiescent low-mass X-ray binaries (qLMXBs) containing neutron stars in a long Chandra X-ray exposure of the globular cluster 47 Tucanae, in addition to the two previously known qLMXBs. W37's spectrum is dominated by a blackbody-like component consistent with radiation from the hydrogen atmosphere of a 10 km neutron star. W37's lightcurve shows strong X-ray variability which we attribute to variations in its absorbing column depth, and eclipses with a probable 3.087 hour period. For most of our exposures, W37's blackbody-like emission (assumed to be from the neutron star surface) is almost completely obscured, yet some soft X-rays (of uncertain origin) remain. Two additional candidates, W17 and X4, present X-ray spectra dominated by a harder component, fit by a power-law of photon index ~1.6-3. An additional soft component is required for both W17 and X4, which can be fit with a 10 km hydrogen-atmosphere neutron star model. X4 shows significant variability, which may arise from either its power-law or hydrogen-atmosphere spectral component. Both W17 and X4 show rather low X-ray luminosities, Lx(0.5-10 keV)~5*10^{31} ergs/s. All three candidate qLMXBs would be difficult to identify in other globular clusters, suggesting an additional reservoir of fainter qLMXBs in globular clusters that may be of similar numbers as the group of previously identified objects. The number of millisecond pulsars inferred to exist in 47 Tuc is less than 10 times larger than the number of qLMXBs in 47 Tuc, indicating that for typical inferred lifetimes of 10 and 1 Gyr respectively, their birthrates are comparable.Comment: Accepted for publication in ApJ. 13 pages, 7 figures (2 color

    Proposed Next Generation GRB Mission: EXIST

    Get PDF
    A next generation Gamma Ray Burst (GRB) mission to follow the upcoming Swift mission is described. The proposed Energetic X-ray Imaging Survey Telescope, EXIST, would yield the limiting (practical) GRB trigger sensitivity, broad-band spectral and temporal response, and spatial resolution over a wide field. It would provide high resolution spectra and locations for GRBs detected at GeV energies with GLAST. Together with the next generation missions Constellation-X, NGST and LISA and optical-survey (LSST) telescopes, EXIST would enable GRBs to be used as probes of the early universe and the first generation of stars. EXIST alone would give ~10-50" positions (long or short GRBs), approximate redshifts from lags, and constrain physics of jets, orphan afterglows, neutrinos and SGRs.Comment: 4 pages, 4 figures. Presented at Woods Hole GRB Conf. (2001); to appear in AIP Conf. Pro

    Observing GRBs with EXIST

    Get PDF
    We describe the Energetic X-ray Imaging Survey Telescope EXIST, designed to carry out a sensitive all-sky survey in the 10 keV – 600 keV band. The primary goal of EXIST is to find black holes in the local and distant universe. EXIST also traces cosmic star formation via gamma-ray bursts and gamma-ray lines from radioactive elements ejected by supernovae and novae
    • …
    corecore