8,630 research outputs found
Coherent optical transfer of Feshbach molecules to a lower vibrational state
Using the technique of stimulated Raman adiabatic passage (STIRAP) we have
coherently transferred ultracold 87Rb2 Feshbach molecules into a more deeply
bound vibrational quantum level. Our measurements indicate a high transfer
efficiency of up to 87%. As the molecules are held in an optical lattice with
not more than a single molecule per lattice site, inelastic collisions between
the molecules are suppressed and we observe long molecular lifetimes of about 1
s. Using STIRAP we have created quantum superpositions of the two molecular
states and tested their coherence interferometrically. These results represent
an important step towards Bose-Einstein condensation (BEC) of molecules in the
vibrational ground state.Comment: 4 pages, 5 figure
Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition
Niobium nitride (NbN) is widely used in high-frequency superconducting
electronics circuits because it has one of the highest superconducting
transition temperatures ( 16.5 K) and largest gap among
conventional superconductors. In its thin-film form, the of NbN is very
sensitive to growth conditions and it still remains a challenge to grow NbN
thin film (below 50 nm) with high . Here, we report on the superconducting
properties of NbN thin films grown by high-temperature chemical vapor
deposition (HTCVD). Transport measurements reveal significantly lower disorder
than previously reported, characterized by a Ioffe-Regel ()
parameter of 14. Accordingly we observe 17.06 K (point of
50% of normal state resistance), the highest value reported so far for films of
thickness below 50 nm, indicating that HTCVD could be particularly useful for
growing high quality NbN thin films
Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture
We report on the observation of interspecies Feshbach resonances in an
ultracold, optically trapped mixture of Rb and Cs atoms. In a magnetic field
range up to 300 G we find 23 interspecies Feshbach resonances in the lowest
spin channel and 2 resonances in a higher channel of the mixture. The
extraordinarily rich Feshbach spectrum suggests the importance of different
partial waves in both the open and closed channels of the scattering problem
along with higher-order coupling mechanisms. Our results provide, on one hand,
fundamental experimental input to characterize the Rb-Cs scattering properties
and, on the other hand, identify possible starting points for the association
of ultracold heteronuclear RbCs molecules.Comment: 7 pages, 3 figures, 1 tabl
Anomaly Cancelation in Field Theory and F-theory on a Circle
We study the manifestation of local gauge anomalies of four- and
six-dimensional field theories in the lower-dimensional Kaluza-Klein theory
obtained after circle compactification. We identify a convenient set of
transformations acting on the whole tower of massless and massive states and
investigate their action on the low-energy effective theories in the Coulomb
branch. The maps employ higher-dimensional large gauge transformations and
precisely yield the anomaly cancelation conditions when acting on the one-loop
induced Chern-Simons terms in the three- and five-dimensional effective theory.
The arising symmetries are argued to play a key role in the study of the
M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact
that all fully resolved F-theory geometries inducing multiple Abelian gauge
groups or non-Abelian groups admit a certain set of symmetries, we are able to
generally show the cancelation of pure Abelian or pure non-Abelian anomalies in
these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes
adde
Non-universality of artificial frustrated spin systems
Magnetic frustration effects in artificial kagome arrays of nanomagnets with
out-of-plane magnetization are investigated using Magnetic Force Microscopy and
Monte Carlo simulations. Experimental and theoretical results are compared to
those found for the artificial kagome spin ice, in which the nanomagnets have
in-plane magnetization. In contrast with what has been recently reported, we
demonstrate that long range (i.e. beyond nearest-neighbors) dipolar
interactions between the nanomagnets cannot be neglected when describing the
magnetic configurations observed after demagnetizing the arrays using a field
protocol. As a consequence, there are clear limits to any universality in the
behavior of these two artificial frustrated spin systems. We provide arguments
to explain why these two systems show striking similarities at first sight in
the development of pairwise spin correlations.Comment: 7 pages, 6 figure
Feshbach resonances in the 6Li-40K Fermi-Fermi mixture: Elastic versus inelastic interactions
We present a detailed theoretical and experimental study of Feshbach
resonances in the 6Li-40K mixture. Particular attention is given to the
inelastic scattering properties, which have not been considered before. As an
important example, we thoroughly investigate both elastic and inelastic
scattering properties of a resonance that occurs near 155 G. Our theoretical
predictions based on a coupled channels calculation are found in excellent
agreement with the experimental results. We also present theoretical results on
the molecular state that underlies the 155G resonance, in particular concerning
its lifetime against spontaneous dissociation. We then present a survey of
resonances in the system, fully characterizing the corresponding elastic and
inelastic scattering properties. This provides the essential information to
identify optimum resonances for applications relying on interaction control in
this Fermi-Fermi mixture.Comment: Submitted to EPJD, EuroQUAM special issues "Cold Quantum Matter -
Achievements and Prospects", v2 with updated calibration of magnetic field
(+4mG correction) and updated figures 4 and
- …