109 research outputs found

    Hodgkin's Lymphoma: A Review of Neurologic Complications

    Get PDF
    Hodgkin's lymphoma is a hematolymphoid neoplasm, primarily of B cell lineage, that has unique histologic, immunophenotypic, and clinical features. Neurologic complications of Hodgkin's Lymphoma can be separated into those that result directly from the disease, indirectly from the disease, or from its treatment. Direct neurologic dysfunction from Hodgkin's Lymphoma results from metastatic intracranial spinal disease, epidural metastases causing spinal cord/cauda equina compression, leptomeningeal metastases, or intradural intramedullary spinal cord metastases. Indirect neurologic dysfunction may be caused by paraneoplastic disorders (such as paraneoplastic cerebellar degeneration or limbic encephalitis) and primary angiitis of the central nervous system. Hodgkin's lymphoma treatment typically includes chemotherapy or radiotherapy with potential treatment-related complications affecting the nervous system. Neurologic complications resulting from mantle-field radiotherapy include the “dropped head syndrome,” acute brachial plexopathy, and transient ischemic attacks/cerebral infarcts. Chemotherapy for Hodgkin's lymphoma may cause cerebral infarction (due to emboli from anthracycline-induced cardiomyopathy) and peripheral neuropathy

    Analyzing the Periodicity in Proto-Planetary Nebulae

    Get PDF
    Our research revolved around analyzing how the brightness of proto-planetary nebulae (PPNe) vary over time. The overall goal was to analyze their light curves for periodicity and to find what the periods are. PPNe are celestial objects in transition from the red giant phase to the planetary nebula phase of a star’s life cycle, a phase that only lasts a few thousand years. PPNe are known to pulsate, causing them to periodically vary in brightness, and these pulsations can be observed and analyzed in their light curves. To analyze our PPNe for periodicity, we gathered data from the online database of a sky survey named ASAS-SN, which surveys the skies every clear night. The observational data stretch back to 2016. After reducing the data, we analyzed it using a program called Period04, which uses a Fourier transform to search for periods and allowed us to fit sine curves to the data. We studied a sample of 14 PPNe located in the southern hemisphere. We found that most have periods ranging from around 20 - 103 days, with several PPNe having multiple periods. The general pattern was that most of those PPNe have two periods that are within 10% of each other, forming beat periods in the amplitudes. Two PPNe also have longer period modulations of 1000 to 2000 days. This research was supported by a grant from the Indiana Space Grant Consortium

    Combined Modality Approaches in the Management of Adult Glioblastoma

    Get PDF
    Over the past two decades, management of newly diagnosed glioblastoma has undergone significant evolution. While surgery has long been a mainstay of management for this disease, and while radiotherapy has a proven survival role, initial efforts at radiotherapy dose escalation, use of radiosurgery, brachytherapy, and altered fractionation did not improve patient survival. Recently, multiple modality therapy integrating maximal safe resection, postoperative radiation, and new systemic therapies have resulted in improved patient outcomes compared with older regimens utilizing surgery and postoperative radiation alone. Numerous trials are currently underway investigating the combination of surgery, radiation, and systemic therapy with targeted agents to find ways to further improve outcomes for adults with glioblastoma

    HIF1 and DROSHA are involved in MMACHC repression in hypoxia

    Full text link
    The MMACHC gene encodes for an enzyme involved in intracellular vitamin B12 metabolism, and autosomal recessive defects in MMACHC represent the most common disorder of intracellular vitamin B12 metabolism. Recent studies have identified increased levels of reactive oxygen species in cells and tissues with MMACHC dysfunction, suggesting a role for oxidative stress in disease. To investigate the link between oxidative stress and MMACHC, we exposed mice as well as human and mouse cells to hypoxia, and found significant repression of MMACHC in all investigated tissues (retina, eyecup, liver, kidney) and cell lines (HeLa, ARPE-19, human and mouse fibroblasts, 661W). Furthermore, in HeLa cells, we found transcriptional repression already at 5% oxygen, which was stable during prolonged hypoxia up to 5 days, and a return of MMACHC transcripts to normal levels only 24 h after reoxygenation. This hypoxia-induced downregulation of MMACHC was not due to altered function of the known MMACHC controlling transcription factor complex HCFC1/THAP11/ZNF143. Using in vitro RNA interference against hypoxia-induced transcription factors (HIF1A, HIF2A and REST) as well as the microRNA transcription machinery (DROSHA), we observed release of hypoxia-dependent downregulation of MMACHC expression by HIF1A and DROSHA knockdowns, whose combined effect was additive. Together, these results strongly indicate that MMACHC is a hypoxia-regulated gene whose downregulation appears to be partially mediated through both hypoxia-induced transcription factor and microRNA machinery. These findings suggest that oxidative stress could impair vitamin B12 metabolism by repression of MMACHC in healthy as well as in diseased individuals

    3C. 3-Ketosteroid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Steroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [65, 193]) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3-hydroxysteroids (estrone and 17β-estradiol) and 3-ketosteroids (dihydrotestosterone [DHT], aldosterone, cortisol, corticosterone, progesterone and testosterone)

    3C. 3-Ketosteroid receptors in GtoPdb v.2023.1

    Get PDF
    Steroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [75, 218, 3]) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3-hydroxysteroids (estrone and 17β-estradiol) and 3-ketosteroids (dihydrotestosterone [DHT], aldosterone, cortisol, corticosterone, progesterone and testosterone). For rodent GR and MR, the physiological ligand is corticosterone rather than cortisol

    3C. 3-Ketosteroid receptors in GtoPdb v.2021.3

    Get PDF
    Steroid hormone receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Nuclear Hormone Receptors [74, 215, 3]) are nuclear hormone receptors of the NR3 class, with endogenous agonists that may be divided into 3-hydroxysteroids (estrone and 17β-estradiol) and 3-ketosteroids (dihydrotestosterone [DHT], aldosterone, cortisol, corticosterone, progesterone and testosterone). For rodent GR and MR, the physiological ligand is corticosterone rather than cortisol

    Movement and habitat use of the snapping turtle in an urban landscape

    Get PDF
    In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems

    A Computational Approach to Understand In Vitro Alveolar Morphogenesis

    Get PDF
    Primary human alveolar type II (AT II) epithelial cells maintained in Matrigel cultures form alveolar-like cysts (ALCs) using a cytogenesis mechanism that is different from that of other studied epithelial cell types: neither proliferation nor death is involved. During ALC formation, AT II cells engage simultaneously in fundamentally different, but not fully characterized activities. Mechanisms enabling these activities and the roles they play during different process stages are virtually unknown. Identifying, characterizing, and understanding the activities and mechanisms are essential to achieving deeper insight into this fundamental feature of morphogenesis. That deeper insight is needed to answer important questions. When and how does an AT cell choose to switch from one activity to another? Why does it choose one action rather than another? We report obtaining plausible answers using a rigorous, multi-attribute modeling and simulation approach that leveraged earlier efforts by using new, agent and object-oriented capabilities. We discovered a set of cell-level operating principles that enabled in silico cells to self-organize and generate systemic cystogenesis phenomena that are quantitatively indistinguishable from those observed in vitro. Success required that the cell components be quasi-autonomous. As simulation time advances, each in silico cell autonomously updates its environment information to reclassify its condition. It then uses the axiomatic operating principles to execute just one action for each possible condition. The quasi-autonomous actions of individual in silico cells were sufficient for developing stable cyst-like structures. The results strengthen in silico to in vitro mappings at three levels: mechanisms, behaviors, and operating principles, thereby achieving a degree of validation and enabling answering the questions posed. We suggest that the in silico operating principles presented may have a biological counterpart and that a semiquantitative mapping exists between in silico causal events and in vitro causal events
    corecore