748 research outputs found

    Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications

    Get PDF
    Supplementary material to this book contains the following Adobe-Writer (.pdf) files: an overview of the material, the color coding for the map on the title page), and supporting information for chapter 1, 14, 20, 22 and 30. Some of the files contain further links to materials on this server, in particular is there a collection of structural formulas accessible from the material to chapter 1. Please, click on the respective files for downloading. Any reference should cite the full title of the book

    Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis

    Get PDF
    Tetrapyrrole biosynthesis produces metabolites that are essential for critical reactions in photosynthetic organisms, including chlorophylls, heme, siroheme, phytochromobilins, and their derivatives. Due to the paramount importance of tetrapyrroles, a better understanding of the complex regulation of tetrapyrrole biosynthesis promises to improve plant productivity in the context of global climate change. Tetrapyrrole biosynthesis is known to be controlled at multiple levels—transcriptional, translational and post-translational. This review addresses recent advances in our knowledge of the post-translational regulation of tetrapyrrole biosynthesis and summarizes the regulatory functions of the various auxiliary factors involved. Intriguingly, the post-translational network features three prominent metabolic checkpoints, located at the steps of (i) 5-aminolevulinic acid synthesis (the rate-limiting step in the pathway), (ii) the branchpoint between chlorophyll and heme synthesis, and (iii) the light-dependent enzyme protochlorophyllide oxidoreductase. The regulation of protein stability, enzymatic activity, and the spatial organization of the committed enzymes in these three steps ensures the appropriate flow of metabolites through the tetrapyrrole biosynthesis pathway during photoperiodic growth. In addition, we offer perspectives on currently open questions for future research on tetrapyrrole biosynthesis.Peer Reviewe

    More indications for redox-sensitive cysteine residues of the Arabidopsis 5-aminolevulinate dehydratase

    Get PDF
    Redox-dependent thiol-disulfide switches of cysteine residues are one of the significant posttranslational modifications of proteins to control rapidly their stability, activity, and protein interaction. Redox control also modulates the tetrapyrrole biosynthesis (TBS). Among the redox-dependent TBS enzymes, 5-aminolevulinic acid dehydratase (ALAD) was previously recognized to interact with reductants, such a thioredoxins or NADPH-dependent thioredoxin reductase C. In this report, we aim to verify the redox sensitivity of ALAD and identify the redox-reactive cysteine residues among the six cysteines of the mature protein form Arabidopsis. Based on structural modelling and comparative studies of wild-type ALAD and ALAD mutants with single and double Cys➔Ser substitutions under oxidizing and reducing conditions, we aim to predict the dimerization and oligomerisation of ALAD as well as the crucial Cys residues for disulfide bridge formation and enzyme activity. The Cys404Ser mutation led to a drastic inactivation of ALAD and redox-dependent properties of ALAD were severely impaired, when Cys71 was simultaneously mutated with Cys152 or Cys251. Cys71 is located in a flexible N-terminal arm of ALAD, which could allow intramolecular disulfide bridges with Cys residues at the surface of the remaining globule ALAD structure. As a result, we propose different roles of Cys residues for redox control, catalytic activity and Mg2+-dependent assembly.Peer Reviewe

    NTRC and TRX-f Coordinately Affect the Levels of Enzymes of Chlorophyll Biosynthesis in a Light-Dependent Manner

    Get PDF
    This article was supported by the German Research Foundation (DFG) and the Open Access Publication Fund of Humboldt-Universität zu Berlin.Redox regulation of plastid gene expression and different metabolic pathways promotes many activities of redox-sensitive proteins. We address the question of how the plastid redox state and the contributing reducing enzymes control the enzymes of tetrapyrrole biosynthesis (TBS). In higher plants, this metabolic pathway serves to produce chlorophyll and heme, among other essential end products. Because of the strictly light-dependent synthesis of chlorophyll, tight control of TBS requires a diurnal balanced supply of the precursor 5-aminolevulinic acid (ALA) to prevent the accumulation of photoreactive metabolic intermediates in darkness. We report on some TBS enzymes that accumulate in a light intensity-dependent manner, and their contents decrease under oxidizing conditions of darkness, low light conditions, or in the absence of NADPH-dependent thioredoxin reductase (NTRC) and thioredoxin f1 (TRX-f1). Analysis of single and double trxf1 and ntrc mutants revealed a decreased content of the early TBS enzymes glutamyl-tRNA reductase (GluTR) and 5-aminolevulinic acid dehydratase (ALAD) instead of an exclusive decrease in enzyme activity. This effect was dependent on light conditions and strongly attenuated after transfer to high light intensities. Thus, it is suggested that a deficiency of plastid-localized thiol-redox transmitters leads to enhanced degradation of TBS enzymes rather than being directly caused by lower catalytic activity. The effects of the proteolytic activity of the Clp protease on TBS enzymes were studied by using Clp subunit-deficient mutants. The simultaneous lack of TRX and Clp activities in double mutants confirms the Clp-induced degradation of some TBS proteins in the absence of reductive activity of TRXs. In addition, we verified previous observations that decreased chlorophyll and heme levels in ntrc could be reverted to WT levels in the ntrc/Δ2cp triple mutant. The decreased synthesis of 5-aminolevulinic acid and porphobilinogen in ntrc was completely restored in ntrc/Δ2cp and correlated with WT-like levels of GluTR, ALAD, and other TBS proteins

    Regulation and function of tetrapyrrole biosynthesis in plants and algae

    Get PDF
    AbstractTetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis

    EFFECT OF SYSTEMATIC LANDING TRAINING ON KNEE KINEMATICS AND GROUND REACTION FORCES IN YOUNG ADULTS

    Get PDF
    In gymnastics, the final landing position represents a key determinant of safety and exercise quality. Previous findings on the biomechanics of landing indicated that knee flexion correlates strongly with ground reaction forces. However, it remains unclear how this relationship is affected by landing training. We conducted a randomized controlled study to assess the effect of systematic landing training on knee kinematics and ground reaction forces in young adult beginner gymnasts. The study included three-dimensional motion analysis of knee flexion and measurement of ground reaction forces for landings from heights of 37 and 87cm. Of the 28 beginner gymnasts who participated in the study, 14 underwent five weeks of landing training, whereas 14 served as controls (no intervention). A significant pre-post difference (-11.2°) was observed only for the control group, and only regarding maximum knee flexion after landings from heights of 37cm. Although no significant effects were noted overall for the training group, systematic landing training seems effective for correcting those landings that deviated strongly from the target position prior to training initiation (37cm, r=-0.74; 8cm, r=-0.77; both with p< 0.01). Thus, while landing training appears to minimize peak forces at ground contact, our findings cannot be explained solely in terms of knee kinematics, warranting muscle activity analysis.  Article visualizations

    FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway

    Get PDF
    During photoperiodic growth, the light-dependent nature of chlorophyll synthesis in angiosperms necessitates robust control of the production of 5-aminolevulinic acid (ALA), the rate-limiting step in the initial stage of tetrapyrrole biosynthesis (TBS). We are interested in dissecting the post-translational control of this process, which suppresses ALA synthesis for chlorophyll synthesis in dark-grown plants. Using biochemical approaches for analysis of Arabidopsis wild-type (WT) and mutant lines as well as complementation lines, we show that the heme-synthesizing ferrochelatase 2 (FC2) interacts with protochlorophyllide oxidoreductase and the regulator FLU which both promote the feedback-controlled suppression of ALA synthesis by inactivation of glutamyl-tRNA reductase, thus preventing excessive accumulation of potentially deleterious tetrapyrrole intermediates. Thereby, FC2 stabilizes POR by physical interaction. When the interaction between FC2 and POR is perturbed, suppression of ALA synthesis is attenuated and photoreactive protochlorophyllide accumulates. FC2 is anchored in the thylakoid membrane via its membrane-spanning CAB (chlorophyll-a-binding) domain. FC2 is one of the two isoforms of ferrochelatase catalyzing the last step of heme synthesis. Although FC2 belongs to the heme-synthesizing branch of TBS, its interaction with POR potentiates the effects of the GluTR-inactivation complex on the chlorophyll-synthesizing branch and ensures reciprocal control of chlorophyll and heme synthesis.Chinese Scholarship CouncilDeutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GluTR-binding protein and contributes to the rate-limiting step of 5-aminolevulinic acid synthesis

    Get PDF
    Tetrapyrroles play fundamental roles in crucial processes including photosynthesis, respiration, and catalysis. In plants, 5-aminolevulinic acid (ALA) is the common precursor of tetrapyrroles. ALA is synthesized from activated glutamate by the enzymes glutamyl-tRNA reductase (GluTR) and glutamate-1-semialdehyde aminotransferase (GSAAT). ALA synthesis is recognized as the rate-limiting step in this pathway. We aimed to explore the contribution of GSAAT to the control of ALA synthesis and the formation of a protein complex with GluTR. In Arabidopsis thaliana, two genes encode GSAAT isoforms: GSA1 and GSA2. A comparison of two GSA knockout mutants with the wild-type revealed the correlation of reduced GSAAT activity and ALA-synthesizing capacity in leaves with lower chlorophyll content. Growth and green pigmentation were more severely impaired in gsa2 than in gsa1, indicating the predominant role of GSAAT2 in ALA synthesis. Interestingly, GluTR accumulated to higher levels in gsa2 than in the wild-type and was mainly associated with the plastid membrane. We propose that the GSAAT content modulates the amount of soluble GluTR available for ALA synthesis. Several different biochemical approaches revealed the GSAAT–GluTR interaction through the assistance of GluTR-binding protein (GBP). A modeled structure of the tripartite protein complex indicated that GBP mediates the stable association of GluTR and GSAAT for adequate ALA synthesis.Peer Reviewe

    A novel tetratricopeptide-repeat protein, TTP1, forms complexes with glutamyl-tRNA reductase and protochlorophyllide oxidoreductase during tetrapyrrole biosynthesis

    Get PDF
    The biosynthesis of the tetrapyrrole end-products chlorophyll and heme depends on a multifaceted control mechanism that acts primarily at the post-translational level upon the rate-limiting step of 5-aminolevulinic acid synthesis and upon light-dependent protochlorophyllide oxidoreductase (POR). These regulatory processes require auxiliary factors that modulate the activity, stability, complex formation, and subplastidal localization of the relevant proteins. Together, they ensure optimal metabolic flow during the day and at night. As an Arabidopsis homolog of the POR-interacting tetratricopeptide-repeat protein (Pitt) first reported in Synechocystis, we characterize tetrapyrrole biosynthesis-regulating tetratricopeptide-repeat protein1 (TTP1). TTP1 is a plastid-localized, membrane-bound factor that interacts with POR, the Mg protoporphyrin monomethylester cyclase CHL27, glutamyl-tRNA reductase (GluTR), GluTR-binding protein, and FLUORESCENCE IN BLUE LIGHT. Lack of TTP1 leads to accumulation of GluTR, enhanced 5-aminolevulinic acid synthesis and lower levels of POR. Knockout mutants show enhanced sensitivity to reactive oxygen species and a slower greening of etiolated seedlings. Based on our studies, the interaction of TTP1 with GluTR and POR does not directly inhibit their enzymatic activity and contribute to the control of 5-aminolevulinic acid synthesis. Instead, we propose that TTP1 sequesters a fraction of these proteins on the thylakoid membrane, and contributes to their stability.Peer Reviewe
    • …
    corecore