17 research outputs found

    Targeted micro-heterogeneity in bioinks allows for 3D printing of complex constructs with improved resolution and cell viability

    Get PDF
    Three-dimensional bioprinting is an evolving versatile technique for biomedical applications. Ideal bioinks have complex micro-environment that mimic human tissue, allow for good printing quality and provide high cell viability after printing. Here we present two strategies for enhancing gelatin-based bioinks heterogeneity on a 1–100 ”m length scale resulting in superior printing quality and high cell viability. A thorough spatial and micro-mechanical characterization of swollen hydrogel heterogeneity was done using multiple particle tracking microrheology. When poly(vinyl alcohol) is added to homogeneous gelatin gels, viscous inclusions are formed due to micro-phase separation. This phenomenon leads to pronounced slip and superior printing quality of complex 3D constructs as well as high human hepatocellular carcinoma (HepG2) and normal human dermal fibroblast (NHDF) cell viability due to reduced shear damage during extrusion. Similar printability and cell viability results are obtained with gelatin/nanoclay composites. The formation of polymer/nanoclay clusters reduces the critical stress of gel fracture, which facilitates extrusion, thus enhancing printing quality and cell viability. Targeted introduction of micro-heterogeneities in bioinks through micro-phase separation is an effective technique for high resolution 3D printing of complex constructs with high cell viability. The size of the heterogeneities, however, has to be substantially smaller than the desired feature size in order to achieve good printing quality

    Expansion of anti-AFP Th1 and Tc1 responses in hepatocellular carcinoma occur in different stages of disease

    Get PDF
    Copyright @ 2010 Cancer Research UK. This work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.Background: α-Fetoprotein (AFP) is a tumour-associated antigen in hepatocellular carcinoma (HCC) and is a target for immunotherapy. However, there is little information on the pattern of CD4 (Th1) and CD8 (Tc1) T-cell response to AFP in patients with HCC and their association with the clinical characteristics of patients. Methods: We therefore analysed CD4 and CD8 T-cell responses to a panel of AFP-derived peptides in a total of 31 HCC patients and 14 controls, using an intracellular cytokine assay for IFN-Îł. Results: Anti-AFP Tc1 responses were detected in 28.5% of controls, as well as in 25% of HCC patients with Okuda I (early tumour stage) and in 31.6% of HCC patients with stage II or III (late tumour stages). An anti-AFP Th1 response was detected only in HCC patients (58.3% with Okuda stage I tumours and 15.8% with Okuda stage II or III tumours). Anti-AFP Th1 response was mainly detected in HCC patients who had normal or mildly elevated serum AFP concentrations (P=0.00188), whereas there was no significant difference between serum AFP concentrations in these patients and the presence of an anti-AFP Tc1 response. A Th1 response was detected in 44% of HCC patients with a Child–Pugh A score (early stage of cirrhosis), whereas this was detected in only 15% with a B or C score (late-stage cirrhosis). In contrast, a Tc1 response was detected in 17% of HCC patients with a Child–Pugh A score and in 46% with a B or C score. Conclusion: These results suggest that anti-AFP Th1 responses are more likely to be present in patients who are in an early stage of disease (for both tumour stage and liver cirrhosis), whereas anti-AFP Tc1 responses are more likely to be present in patients with late-stage liver cirrhosis. Therefore, these data provide valuable information for the design of vaccination strategies against HCC.Association for International Cancer Research and Polkemmet Fund, London Clinic

    Block Polyelectrolyte Additives That Modulate the Viscoelasticity and Enhance the Printability of Gelatin Inks at Physiological Temperatures

    Get PDF
    We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve challenges with the three-dimensional (3D) printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs to solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self-assembly of the bPEs, leading to GelMA/bPE inks that are printable at physiological temperatures, representing stark improvements over GelMA inks that suffer from low viscosity at 37 °C, leading to low printability and poor structural stability. The hierarchical microstructure of the self-assemblies (either jammed micelles or 3D networks) formed by the oppositely charged bPEs, confirmed by small-angle X-ray scattering, is attributed to the enhancements in the shear strength and printability of the GelMA/ bPE inks. Varying bPE concentration in the inks is shown to enable tunability of the rheological properties to meet the criteria of pre- and postextrusion flow characteristics for 3D printing, including prominent yielding behavior, strong shear thinning, and rapid recovery upon flow cessation. Moreover, the bPE self-assemblies also contribute to the robustness of the photo-cross- linked hydrogels; photo-cross-linked GelMA/bPE hydrogels are shown to exhibit higher shear strength than photo-cross-linked GelMA hydrogels. Last, the assessment of the printability of GelMA/bPE inks indicates excellent printing performance, including minimal swelling postextrusion, satisfactory retention of the filament shape upon deposition, and satisfactory shape fidelity of the various printed constructs. We envision this study to serve as a practical guide for the printing of bespoke extrusion inks where bPEs are used as scaffolds and viscosity enhancers that can be emulated in a range of photocurable precursors

    Tuning Superfast Curing Thiol-Norbornene-Functionalized Gelatin Hydrogels for 3D Bioprinting

    Get PDF
    Photocurable gelatin-based hydrogels have established themselves as powerful bioinks in tissue engineering due to their excellent biocompatibility, biodegradability, light responsiveness, thermosensitivity and bioprinting properties. While gelatin methacryloyl (GelMA) has been the gold standard for many years, thiol-ene hydrogel systems based on norbornene-functionalized gelatin (GelNB) and a thiolated crosslinker have recently gained increasing importance. In this paper, a highly reproducible water-based synthesis of GelNB is presented, avoiding the use of dimethyl sulfoxide (DMSO) as organic solvent and covering a broad range of degrees of functionalization (DoF: 20% to 97%). Mixing with thiolated gelatin (GelS) results in the superfast curing photoclick hydrogel GelNB/GelS. Its superior properties over GelMA, such as substantially reduced amounts of photoinitiator (0.03% (w/v)), superfast curing (1–2 s), higher network homogeneity, post-polymerization functionalization ability, minimal cross-reactivity with cellular components, and improved biocompatibility of hydrogel precursors and degradation products lead to increased survival of primary cells in 3D bioprinting. Post-printing viability analysis revealed excellent survival rates of > 84% for GelNB/GelS bioinks of varying crosslinking density, while cell survival for GelMA bioinks is strongly dependent on the DoF. Hence, the semisynthetic and easily accessible GelNB/GelS hydrogel is a highly promising bioink for future medical applications and other light-based biofabrication techniques

    Evaluation of a Novel Thiol–Norbornene-Functionalized Gelatin Hydrogel for Bioprinting of Mesenchymal Stem Cells

    Get PDF
    Introduction: Three-dimensional bioprinting can be considered as an advancement of the classical tissue engineering concept. For bioprinting, cells have to be dispersed in hydrogels. Recently, a novel semi-synthetic thiolene hydrogel system based on norbornene-functionalized gelatin (GelNB) and thiolated gelatin (GelS) was described that resulted in the photoclick hydrogel GelNB/GelS. In this study, we evaluated the printability and biocompatibility of this hydrogel system towards adipose-tissue-derived mesenchymal stem cells (ASCs). Methods: GelNB/GelS was synthesized with three different crosslinking densities (low, medium and high), resulting in different mechanical properties with moduli of elasticity between 206 Pa and 1383 Pa. These hydrogels were tested for their biocompatibility towards ASCs in terms of their viability, proliferation and differentiation. The extrusion-based bioprinting of ASCs in GelNB/GelS-high was performed to manufacture three-dimensional cubic constructs. Results: All three hydrogels supported the viability, proliferation and chondrogenic differentiation of ASCs to a similar extent. The adipogenic differentiation of ASCs was better supported by the softer hydrogel (GelNB/GelS-low), whereas the osteogenic differentiation was more pronounced in the harder hydrogel (GelNB/GelS-high), indicating that the differentiation fate of ASCs can be influenced via the adaption of the mechanical properties of the GelNB/GelS system. After the ex vivo chondrogenic differentiation and subcutaneous implantation of the bioprinted construct into immunocompromised mice, the production of negatively charged sulfated proteoglycans could be observed with only minimal inflammatory signs in the implanted material. Conclusions: Our results indicate that the GelNB/GelS hydrogels are very well suited for the bioprinting of ASCs and may represent attractive hydrogels for subsequent in vivo tissue engineering applications

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Survey of the incidence and effect of major life events on graduate medical education trainees

    No full text
    Purpose: This study aims to assess the incidence of major life events during graduate medical education (GME) training and to establish any associations with modifiable activities and career planning. Methods: The authors surveyed graduating GME trainees from their parent institution in June 2013. Demographic information (clinical department, gender, training duration) and major life events (marriage, children, death/illness, home purchase, legal troubles, property loss) were surveyed. Respondents were queried about the relationship between life events and career planning. A multivariable logistic regression model tested for associations. Results: A total of 53.2% (166/312) of graduates responded to the survey. 50% (83/166) of respondents were female. Major life events occurred in 96.4% (160/166) of respondents. Male trainees were more likely (56.1% [46/82] vs. 30.1% [25/83]) to have a child during training (p=0.01). A total of 41.6% (69/166) of responders consciously engaged or avoided activities during GME training, while 31.9% (53/166) of responders reported that life events influenced their career plans. Trainees in lifestyle residencies (p=0.02), those who experienced the death or illness of a close associate (p=0.01), and those with legal troubles (p=0.04) were significantly more likely to consciously control life events. Conclusion: Major life events are very common and changed career plans in nearly a third of GME trainees. Furthermore, many trainees consciously avoided activities due to their responsibilities during training. GME training programs should closely assess the institutional support systems available to trainees during this difficult time

    Polyelectrolyte Complex Hydrogel Scaffoldings Enable Extrusion-based 3D Bioprinting of Low-Viscosity Bioinks

    No full text
    We generate self-assembled biocompatible scaffolds with excellent structural integrity based on complex-forming block polyelectrolytes that enable extrusion-based 3D bioprinting of large constructs from low-viscosity bioinks. Despite remarkable progress of biofabrication techniques in tissue engineering, the development of extrudable bioinks that perform optimally at physiological temperatures remains a major challenge. Most biopolymer and photocurable precursor solutions exhibit low viscosities at 37 °C, resulting in undesirable flows and loss of form prior to chemical crosslinking. Temperature-sensitive bioinks, such as gelatin methacryloyl (GelMA), can be deposited near their gelling point, but suffer from suboptimal temperature-induced pre-gelation, poor cell viability emerging from long holding times in the cooled cartridges, inefficient temperature transfer from the print bed, and discontinuous layer-by-layer fabrication. Here, we demonstrate that block polyelectrolyte additives serve as effective viscosity enhancers when added to non-extrudable precursor solutions. Rapid, electrostatic self-assembly of block polyelectrolytes into either jammed micelles or interconnected networks provides hydrogel scaffoldings that form nearly instantly, lend initial structural robustness upon deposition, and enhance shear and tensile strength of the cured bioinks. Moreover, our approach enables continuous extrusion without the need of chemical crosslinking between individual layers, paving the way for fast biomanufacturing of human-scale tissue constructs with improved inter-layer bonding

    Block Polyelectrolyte Additives Modulate the Viscoelasticity and Enable 3D Printing of Gelatin Inks at Physiological Temperatures

    No full text
    We demonstrate the utility of block polyelectrolyte (bPE) additives to enhance viscosity and resolve longstanding challenges with the three-dimensional printability of extrusion-based biopolymer inks. The addition of oppositely charged bPEs into solutions of photocurable gelatin methacryloyl (GelMA) results in complexation-driven self- assembly of the bPEs, leading to GelMA/bPE inks that are printable at physiological temperatures, representing stark improvements over GelMA inks that suffer from low viscosity at 37 °C leading to low printability and poor structural stability. The hierarchical microstructure of the self-assemblies (either jammed micelles or three-dimensional networks) formed by the oppositely charged bPEs, as confirmed by small angle X-ray scattering, is attributed to the enhancements in the shear strength and printability of the GelMA/bPE inks. Varying bPE concentration in the inks is shown to enable tunability of the rheological properties to meet the criteria of pre- and post-extrusion flow characteristics for 3D bioprinting, including prominent yield stress behavior, strong shear thinning, and rapid recovery upon flow cessation. Moreover, the bPE self-assemblies also contribute to the robustness of the photocrosslinked hydrogels – photocrosslinked GelMA/bPE hydrogels are shown to exhibit higher shear strength than photocrosslinked GelMA hydrogels. We envision this study to serve as a practical guide for the bioprinting of bespoke extrusion inks where bPE are used as scaffolds and viscosity enhancers that can be emulated in a range of biopolymers and photocurable precursors
    corecore