351 research outputs found

    Studies on the Processing Methods for Extraterrestrial Materials

    Get PDF
    The literature was surveyed for high temperature mass spectrometric research on single oxides, complex oxides, and minerals in an effort to develop a means of separating elements and compounds from lunar and other extraterrestrial materials. A data acquisition system for determining vaporization rates as a function of time and temperature and software for the IEEE-488 Apple-ORTEC interface are discussed. Experimental design information from a 1000 C furnace were used with heat transfer calculations to develop the basic design for a 1600 C furnace. A controller was built for the higher temperature furnace and drawings are being made for the furnace

    Influence of microwave fields on the electron transport through a quantum dot in the presence of a direct tunneling between leads

    Full text link
    We consider the time-dependent electron transport through a quantum dot coupled to two leads in the presence of the additional over-dot (bridge) tunneling channel. By using the evolution operator method together with the wide-band limit approximation we derived the analytical formulaes for the quantum dot charge and current flowing in the system. The influence of the external microwave field on the time-average quantum dot charge, the current and the derivatives of the average current with respect to the gate and source-drain voltages has been investigated for a wide range of parameters.Comment: 28 Pages, 11 Postscript figure

    Large well-relaxed models of vitreous silica, coordination numbers and entropy

    Full text link
    A Monte Carlo method is presented for the simulation of vitreous silica. Well-relaxed networks of vitreous silica are generated containing up to 300,000 atoms. The resulting networks, quenched under the BKS potential, display smaller bond-angle variations and lower defect concentrations, as compared to networks generated with molecular dynamics. The total correlation functions T(r) of our networks are in excellent agreement with neutron scattering data, provided that thermal effects and the maximum inverse wavelength used in the experiment are included in the comparison. A procedure commonly used in experiments to obtain coordination numbers from scattering data is to fit peaks in rT(r) with a gaussian. We show that this procedure can easily produce incorrect results. Finally, we estimate the configurational entropy of vitreous silica.Comment: 7 pages, 4 figures (two column version to save paper

    Effects of partially dismantling the CD4 binding site glycan fence of HIV-1 envelope glycoprotein trimers on neutralizing antibody induction

    Get PDF
    Previously, VLPs bearing JR-FL strain HIV-1 Envelope trimers elicited potent neutralizing antibodies (nAbs) in 2/8 rabbits PLoS Pathog 11(5): e1004932) by taking advantage of a naturally absent glycan at position 197 that borders the CD4 binding site (CD4bs). In new immunizations, we attempted to improve nAb responses by removing the N362 glycan that also lines the CD4bs. All 4 rabbits developed nAbs. One targeted the N197 glycan hole like our previous sera. Two sera depended on the N463 glycan, again suggesting CD4bs overlap. Heterologous boosts appeared to reduce nAb clashes with the N362 glycan. The fourth serum targeted a N362 glycan-sensitive epitope. VLP manufacture challenges prevented us from immunizing larger rabbit numbers to empower a robust statistical analysis. Nevertheless, trends suggest that targeted glycan removal may improve nAb induction by exposing new epitopes and that it may be possible to modify nAb speciUcity using rational heterologous boosts

    A theory-based approach to understanding condom errors and problems reported by men attending an STI clinic

    Get PDF
    The official published version can be accessed from the link below - Copyright @ 2008 Springer VerlagWe employed the information–motivation–behavioral skills (IMB) model to guide an investigation of correlates for correct condom use among 278 adult (18–35 years old) male clients attending a sexually transmitted infection (STI) clinic. An anonymous questionnaire aided by a CD-recording of the questions was administered. Linear Structural Relations Program was used to conduct path analyses of the hypothesized IMB model. Parameter estimates showed that while information did not directly affect behavioral skills, it did have a direct (negative) effect on condom use errors. Motivation had a significant direct (positive) effect on behavioral skills and a significant indirect (positive) effect on condom use errors through behavioral skills. Behavioral skills had a direct (negative) effect on condom use errors. Among men attending a public STI clinic, these findings suggest brief, clinic-based, safer sex programs for men who have sex with women should incorporate activities to convey correct condom use information, instill motivation to use condoms correctly, and directly enhance men’s behavioral skills for correct use of condoms

    Nonequilibrium thermodynamics of interacting tunneling transport: variational grand potential, density-functional formulation, and nature of steady-state forces

    Full text link
    The standard formulation of tunneling transport rests on an open-boundary modeling. There, conserving approximations to nonequilibrium Green function or quantum-statistical mechanics provide consistent but computational costly approaches; alternatively, use of density-dependent ballistic-transport calculations [e.g., Phys. Rev. B 52, 5335 (1995)], here denoted `DBT', provide computationally efficient (approximate) atomistic characterizations of the electron behavior but has until now lacked a formal justification. This paper presents an exact, variational nonequilibrium thermodynamic theory for fully interacting tunneling and provides a rigorous foundation for frozen-nuclei DBT calculations as a lowest order approximation to an exact nonequilibrium thermodynamics density functional evaluation. The theory starts from the complete electron nonequilibrium quantum statistical mechanics and I identify the operator for the nonequilibrium Gibbs free energy. I demonstrate a minimal property of a functional for the nonequilibrium thermodynamic grand potential which thus uniquely identifies the solution as the exact nonequilibrium density matrix. I also show that a uniqueness-of-density proof from a closely related study [Phys. Rev. B 78, 165109 (2008)] makes it possible to provide a single-particle formulation based on universal electron-density functionals. I illustrate a formal evaluation of the thermodynamics grand potential value which is closely related to the variation in scattering phase shifts and hence to Friedel density oscillations. This paper also discusses the difference between the here-presented exact thermodynamics forces and the often-used electrostatic forces. Finally the paper documents an inherent adiabatic nature of the thermodynamics forces and observes that these are suited for a nonequilibrium implementation of the Born-Oppenheimer approximation.Comment: 37 pages, 3 Figure

    Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign

    Get PDF
    Lidars are uniquely capable of collecting high-precision and high spatiotemporal resolution observations that have been used for atmospheric process studies from the ground, aircraft, and space for many years. The Aeolus mission, the first space-borne Doppler wind lidar, was developed by the European Space Agency (ESA) and launched in August 2018. Its novel Atmospheric LAser Doppler INstrument (ALADIN) observes profiles of the component of the wind vector and aerosol/cloud optical properties along the instrument's line-of-sight (LOS) direction on a global scale. A total of two airborne lidar systems have been developed at NASA Langley Research Center in recent years that collect measurements in support of several NASA Earth Science Division focus areas. The coherent Doppler Aerosol WiNd (DAWN) lidar measures vertical profiles of LOS velocity along selected azimuth angles that are combined to derive profiles of horizontal wind speed and direction. The High Altitude Lidar Observatory (HALO) measures high resolution profiles of atmospheric water vapor (WV) and aerosol and cloud optical properties. Because there are limitations in terms of spatial and vertical detail and measurement precision that can be accomplished from space, airborne remote sensing observations like those from DAWN and HALO are required to fill these observational gaps and to calibrate and validate space-borne measurements. Over a 2-week period in April 2019, during their Aeolus Cal/Val Test Flight campaign, NASA conducted five research flights over the eastern Pacific Ocean with the DC-8 aircraft. The purpose was to demonstrate the following: (1) DAWN and HALO measurement capabilities across a range of atmospheric conditions, (2) Aeolus Cal/Val flight strategies and comparisons of DAWN and HALO measurements with Aeolus, to gain an initial perspective of Aeolus performance, and (3) ways in which atmospheric dynamic processes can be resolved and better understood through simultaneous observations of wind, WV, and aerosol profile observations, coupled with numerical model and other remote sensing observations. This paper provides a brief description of the DAWN and HALO instruments, discusses the synergistic observations collected across a wide range of atmospheric conditions sampled during the DC-8 flights, and gives a brief summary of the validation of DAWN, HALO, and Aeolus observations and comparisons.</p

    Transforming medical professionalism to fit changing health needs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The professional organization of medical work no longer reflects the changing health needs caused by the growing number of complex and chronically ill patients. Key stakeholders enforce coordination and remove power from the medical professions in order allow for these changes. However, it may also be necessary to initiate basic changes to way in which the medical professionals work in order to adapt to the changing health needs.</p> <p>Discussion</p> <p>Medical leaders, supported by health policy makers, can consciously activate the self-regulatory capacity of medical professionalism in order to transform the medical profession and the related professional processes of care so that it can adapt to the changing health needs. In doing so, they would open up additional routes to the improvement of the health services system and to health improvement. This involves three consecutive steps: (1) defining and categorizing the health needs of the population; (2) reorganizing the specialty domains around the needs of population groups; (3) reorganizing the specialty domains by eliminating work that could be done by less educated personnel or by the patients themselves. We suggest seven strategies that are required in order to achieve this transformation.</p> <p>Summary</p> <p>Changing medical professionalism to fit the changing health needs will not be easy. It will need strong leadership. But, if the medical world does not embark on this endeavour, good doctoring will become merely a bureaucratic and/or marketing exercise that obscures the ultimate goal of medicine which is to optimize the health of both individuals and the entire population.</p
    • 

    corecore