5 research outputs found

    Hormonal and morphological predictors of women’s body attractiveness

    Get PDF
    Does women’s body attractiveness predict indices of reproductive capacity? Prior research has provided evidence that large breast size and low waist-to-hip ratio (WHR) are positively associated with women’s estrogen and progesterone concentrations, but no previous studies appear to have directly tested whether ratings of women\u27s body attractiveness are predicted by higher concentrations of ovarian hormones measured across broad regions of the menstrual cycle. Here, we collected daily saliva samples across 1–2 menstrual cycles from a sample of young women; assayed the samples for estradiol, progesterone, and testosterone; obtained anthropometric measurements of the women’s bodies; and also obtained attractiveness ratings of the women’s bodies from photographs of them taken in standardized clothing with faces obscured. Contrary to previous research, mean hormone concentrations were uncorrelated with breast size and WHR. Body mass index (BMI) was a very strong negative predictor of body attractiveness ratings, similar to previous findings. Zero-order associations between women’s mean hormone concentrations and mean attractiveness ratings were not significant; however, after controlling for BMI, attractiveness ratings were independently and positively associated with both estradiol and testosterone concentrations. Discussion focuses on the implications of these findings for whether attractiveness assessment mechanisms are specialized for the detection of cues of differential fecundity in young women’s bodies

    Clonal architecture of secondary acute myeloid leukemia

    Get PDF
    BACKGROUND: The myelodysplastic syndromes are a group of hematologic disorders that often evolve into secondary acute myeloid leukemia (AML). The genetic changes that underlie progression from the myelodysplastic syndromes to secondary AML are not well understood. METHODS: We performed whole-genome sequencing of seven paired samples of skin and bone marrow in seven subjects with secondary AML to identify somatic mutations specific to secondary AML. We then genotyped a bone marrow sample obtained during the antecedent myelodysplastic-syndrome stage from each subject to determine the presence or absence of the specific somatic mutations. We identified recurrent mutations in coding genes and defined the clonal architecture of each pair of samples from the myelodysplastic-syndrome stage and the secondary-AML stage, using the allele burden of hundreds of mutations. RESULTS: Approximately 85% of bone marrow cells were clonal in the myelodysplastic-syndrome and secondary-AML samples, regardless of the myeloblast count. The secondary-AML samples contained mutations in 11 recurrently mutated genes, including 4 genes that have not been previously implicated in the myelodysplastic syndromes or AML. In every case, progression to acute leukemia was defined by the persistence of an antecedent founding clone containing 182 to 660 somatic mutations and the outgrowth or emergence of at least one subclone, harboring dozens to hundreds of new mutations. All founding clones and subclones contained at least one mutation in a coding gene. CONCLUSIONS: Nearly all the bone marrow cells in patients with myelodysplastic syndromes and secondary AML are clonally derived. Genetic evolution of secondary AML is a dynamic process shaped by multiple cycles of mutation acquisition and clonal selection. Recurrent gene mutations are found in both founding clones and daughter subclones. (Funded by the National Institutes of Health and others.
    corecore