2,683 research outputs found

    Intrinsic instability of electronic interfaces with strong Rashba coupling

    Full text link
    We consider a model for the two-dimensional electron gas formed at the interface of oxide heterostructures, which includes a Rashba spin-orbit coupling proportional to the electric field perpendicular to the interface. Based on the standard mechanism of polarity catastrophe, we assume that the electric field is proportional to the electron density. Under these simple and general assumptions, we show that a phase separation instability occurs for realistic values of the spin-orbit coupling and of the band parameters. This could provide an intrinsic mechanism for the recently observed inhomogeneous phases at the LaAlO_3/SrTiO_3 or LaTiO_3/SrTiO_3 interfaces.Comment: 5 pages, 4 figure

    Jahn-Teller, Charge and Magnetic Ordering in half-doped Manganese Oxides

    Full text link
    The phase diagram of half-doped manganite systems of formula A_{0.5}A'_{0.5}MnO_3 is investigated within a single-orbital model incorporating magnetic double-exchange and superexchange, together with intersite Coulomb and electron-lattice interactions. Strong Jahn-Teller and breathing mode deformations compete together and result in shear lattice deformations. The latters stabilize the charge-ordered CE-type phase, which undergo first-order transitions with temperature or magnetic field to either Ferromagnetic metallic or Paramagnetic insulating phases. An essential feature is the self-consistent screening of Coulomb and electron-phonon interactions in the ferromagnetic phase.Comment: 10 pages, six figures (eps files) +two class file

    Collective transport and optical absorption near the stripe criticality

    Full text link
    Within the stripe quantum critical point scenario for high TcT_c superconductors, we point out the possible direct contribution of charge collective fluctuations to the optical absorption and to the d.c. resistivity.Comment: 2 pages 2 figures 1 style fil

    Single-particle spectra near a stripe instability

    Full text link
    We analyze the single-particle spectra of a bi-layered electron system near a stripe instability and compare the results with ARPES experiments on the Bi2212 cuprate superconductor near optimum doping, addressing also the issue of the puzzling absence of bonding-antibonding splitting.Comment: Proceedings of the XXII International Conference on Low Temperature Physics August 4-11, 1999, Espoo and Helsinki, Finland (minor changes to the figure) Similar results in the Proceedings of the International Workshop on ``Electronic crystals, ECRYS-99'', May 31-June 5 1999, La Colle sur Loup (France), J. Phys. IV France 9, Pr10-337 (1999

    A large-N analysis of the local quantum critical point and the spin-liquid phase

    Full text link
    We study analytically the Kondo lattice model with an additional nearest-neighbor antiferromagnetic interaction in the framework of large-N theory. We find that there is a local quantum critical point between two phases, a normal Fermi-liquid and a spin-liquid in which the spins are decoupled from the conduction electrons. The local spin susceptibility displays a power-law divergence throughout the spin liquid phase. We check the reliability of the large-N results by solving by quantum Monte Carlo simulation the N=2 spin-liquid problem with no conduction electrons and find qualitative agreement. We show that the spin-liquid phase is unstable at low temperatures, suggestive of a first-order transition to an ordered phase.Comment: 4 pages and 1 figur

    Anomalous isotopic effect near the charge-ordering quantum criticality

    Full text link
    Within the Hubbard-Holstein model, we evaluate the various crossover lines marking the opening of pseudogaps in the cuprates, which, in our scenario, are ruled by the proximity to a charge-ordering quantum criticality (stripe formation). We provide also an analysis of their isotopic dependencies, as produced by critical fluctuations. We find no isotopic shift of the temperature T0T^0 marked as a reduction of the quasiparticle density of states in various experiments, and a substantial positive shift of the pseudogap-formation temperature T∗T^*. We infer that the superconducting critical temperature TcT_c has almost no shift in the optimally- and overdoped regimes while it has a small negative isotopic shift in the underdoped, which increses upon underdoping. We account also for the possible dynamical nature of the charge-ordering transition, and explain in this way the spread of the values of T∗T^* and its of isotopic shift, obtained with experimental probes having different characteristic timescales.Comment: 4 pages, 3 figure

    Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors

    Full text link
    When the electron density of highly crystalline thin films is tuned by chemical doping or ionic liq- uid gating, interesting effects appear including unconventional superconductivity, sizeable spin-orbit coupling, competition with charge-density waves, and a debated low-temperature metallic state that seems to avoid the superconducting or insulating fate of standard two-dimensional electron systems. Some experiments also find a marked tendency to a negative electronic compressibility. We suggest that this indicates an inclination for electronic phase separation resulting in a nanoscopic inhomo- geneity. Although the mild modulation of the inhomogeneous landscape is compatible with a high electron mobility in the metallic state, this intrinsically inhomogeneous character is highlighted by the peculiar behaviour of the metal-to-superconductor transition. Modelling the system with super- conducting puddles embedded in a metallic matrix, we fit the peculiar resistance vs. temperature curves of systems like TiSe2, MoS2, and ZrNCl. In this framework also the low-temperature debated metallic state finds a natural explanation in terms of the pristine metallic background embedding non-percolating superconducting clusters. An intrinsically inhomogeneous character naturally raises the question of the formation mechanism(s). We propose a mechanism based on the interplay be- tween electrons and the charges of the gating ionic liquid.Comment: substantially modified presentation: 12 pages 7 figure

    Phase separation and long wave-length charge instabilities in spin-orbit coupled systems

    Full text link
    We investigate a two-dimensional electron model with Rashba spin-orbit interaction where the coupling constant g=g(n)g=g(n) depends on the electronic density. It is shown that this dependence may drive the system unstable towards a long-wave length charge density wave (CDW) where the associated second order instability occurs in close vicinity to global phase separation. For very low electron densities the CDW instability is nesting-induced and the modulation follows the Fermi momentum kFk_F. At higher density the instability criterion becomes independent of kFk_F and the system may become unstable in a broad momentum range. Finally, upon filling the upper spin-orbit split band, finite momentum instabilities disappear in favor of phase separation alone. We discuss our results with regard to the inhomogeneous phases observed at the LaAlO3_3/SrTiO3_3 or LaTiO3_3/SrTiO3_3 interfaces.Comment: 6 pages, 6 figure
    • …
    corecore