1,294 research outputs found
Negative electronic compressibility and nanoscale inhomogeneity in ionic-liquid gated two-dimensional superconductors
When the electron density of highly crystalline thin films is tuned by
chemical doping or ionic liq- uid gating, interesting effects appear including
unconventional superconductivity, sizeable spin-orbit coupling, competition
with charge-density waves, and a debated low-temperature metallic state that
seems to avoid the superconducting or insulating fate of standard
two-dimensional electron systems. Some experiments also find a marked tendency
to a negative electronic compressibility. We suggest that this indicates an
inclination for electronic phase separation resulting in a nanoscopic inhomo-
geneity. Although the mild modulation of the inhomogeneous landscape is
compatible with a high electron mobility in the metallic state, this
intrinsically inhomogeneous character is highlighted by the peculiar behaviour
of the metal-to-superconductor transition. Modelling the system with super-
conducting puddles embedded in a metallic matrix, we fit the peculiar
resistance vs. temperature curves of systems like TiSe2, MoS2, and ZrNCl. In
this framework also the low-temperature debated metallic state finds a natural
explanation in terms of the pristine metallic background embedding
non-percolating superconducting clusters. An intrinsically inhomogeneous
character naturally raises the question of the formation mechanism(s). We
propose a mechanism based on the interplay be- tween electrons and the charges
of the gating ionic liquid.Comment: substantially modified presentation: 12 pages 7 figure
Interplay between density and superconducting quantum critical fluctuations
We consider the case of a density-driven metal-superconductor transition in
the proximity of an electronic phase separation. In particular we investigate
the interplay between superconducting fluctuations and density fluctuations,
which become quantum critical when the electronic phase separation vanishes at
zero temperature into a quantum critical point. In this situation the critical
dynamical density fluctuations strongly affect the dynamics of the Cooper pair
fluctuations, which acquire a more singular character with a z=3 dynamical
critical index. This gives rise to a scenario that possibly rules the
disappearance of superconductivity when the electron density is reduced by
elecrostatic gating at the LaAlO3/SrTiO3 interface.Comment: 5 pages, 4 figure
Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces
There is steadily increasing evidence that the two-dimensional electron gas
(2DEG) formed at the interface of some insulating oxides like LaAlO3/SrTiO3 and
LaTiO3/SrTiO3 is strongly inhomogeneous. The inhomogeneous distribution of
electron density is accompanied by an inhomogeneous distribution of the
(self-consistent) electric field confining the electrons at the interface. In
turn this inhomogeneous transverse electric field induces an inhomogeneous
Rashba spin-orbit coupling (RSOC). After an introductory summary on two
mechanisms possibly giving rise to an electronic phase separation accounting
for the above inhomogeneity,we introduce a phenomenological model to describe
the density-dependent RSOC and its consequences. Besides being itself a
possible source of inhomogeneity or charge-density waves, the density-dependent
RSOC gives rise to interesting physical effects like the occurrence of
inhomogeneous spin-current distributions and inhomogeneous quantum-Hall states
with chiral "edge" states taking place in the bulk of the 2DEG. The
inhomogeneous RSOC can also be exploited for spintronic devices since it can be
used to produce a disorder-robust spin Hall effect.Comment: 13 pages, 15 figure
Phase separation from electron confinement at oxide interfaces
Oxide heterostructures are of great interest both for fundamental and
applicative reasons. In particular the two-dimensional electron gas at the
LaAlO/SrTiO or LaTiO/SrTiO interfaces displays many different
physical properties and functionalities. However there are clear indications
that the interface electronic state is strongly inhomogeneous and therefore it
is crucially relevant to investigate possible intrinsic electronic mechanisms
underlying this inhomogeneity. Here the electrostatic potential confining the
electron gas at the interface is calculated self-consistently, finding that the
electron confinement at the interface may induce phase separation, to avoid a
thermodynamically unstable state with a negative compressibility. This provides
a generic robust and intrinsic mechanism for the experimentally observed
inhomogeneous character of these interfaces.Comment: 8 pages and 4 figure
Possible mechanisms of electronic phase separation in oxide interfaces
LaAlO3/SrTiO3 ad LaTiO3/SrTiO3 interfaces are known to host a strongly
inhomogeneous (nearly) two-dimensional electron gas (2DEG). In this work we
present three unconventional electronic mechanisms of electronic phase
separation (EPS) in a 2DEG as a possible source of inhomogeneity in oxide
interfaces. Common to all three mechanisms is the dependence of some
(interaction) potential on the 2DEG's density. We first consider a mechanism
resulting from a sizable density-dependent Rashba spin-orbit coupling. Next, we
point out that an EPS may also occur in the case of a density-dependent
superconducting pairing interaction. Finally, we show that the confinement of
the 2DEG to the interface by a density-dependent, self-consistent electrostatic
potential can by itself cause an EPS.Comment: 4 pages and 4 figures, Proceedings of the International Conference
"Superstripes 2014", 25-31 July 2015, Erice, Ital
Inhomogeneous multi-carrier superconductivity at LaXO3/SrTiO3 (X=Al or Ti) oxide interfaces
Several experiments reveal the inhomogeneous character of the superconducting
state that occurs when the carrier density of the two-dimensional electron gas
formed at the LaXO3/SrTiO3 (X=Al or Ti) interface is tuned above a threshold
value by means of gating. Re-analyzing previous measurements, that highlight
the presence of two kinds of carriers, with low and high mobility, we shall
provide a description of multi-carrier magneto-transport in an inhomogeneous
two-dimensional electron gas, gaining insight into the properties of the
physics of the systems under investigation. We shall then show that the
measured resistance, superfluid density, and tunneling spectra result from the
percolative connection of superconducting "puddles" with randomly distributed
critical temperatures, embedded in a weakly localizing metallic matrix. We
shall also show that this scenario is consistent with the characteristics of
the superconductor-to-metal transition driven by a magnetic field. A
multi-carrier description of the superconducting state, within a weak-coupling
BCS-like model, will be finally discussed.Comment: 12 pages 10 figure
The Electron-Phonon Interaction in the Presence of Strong Correlations
We investigate the effect of strong electron-electron repulsion on the
electron-phonon interaction from a Fermi-liquid point of view: the strong
interaction is responsible for vertex corrections, which are strongly dependent
on the ratio. These corrections generically lead to a strong
suppression of the effective coupling between quasiparticles mediated by a
single phonon exchange in the limit. However, such effect
is not present when . Analyzing the Landau stability
criterion, we show that a sizable electron-phonon interaction can push the
system towards a phase-separation instability. A detailed analysis is then
carried out using a slave-boson approach for the infinite-U three-band Hubbard
model. In the presence of a coupling between the local hole density and a
dispersionless optical phonon, we explicitly confirm the strong dependence of
the hole-phonon coupling on the transferred momentum versus frequency ratio. We
also find that the exchange of phonons leads to an unstable phase with negative
compressibility already at small values of the bare hole-phonon coupling. Close
to the unstable region, we detect Cooper instabilities both in s- and d-wave
channels supporting a possible connection between phase separation and
superconductivity in strongly correlated systems.Comment: LateX 3.14, 04.11.1994 Preprint no.101
Multi-band superconductivity and nanoscale inhomogeneity at oxide interfaces
The two-dimensional electron gas at the LaTiO3/SrTiO3 or LaAlO3/SrTiO3 oxide
interfaces becomes superconducting when the carrier density is tuned by gating.
The measured resistance and superfluid density reveal an inhomogeneous
superconductivity resulting from percolation of filamentary structures of
superconducting "puddles" with randomly distributed critical temperatures,
embedded in a non-superconducting matrix. Following the evidence that
superconductivity is related to the appearance of high-mobility carriers, we
model intra-puddle superconductivity by a multi-band system within a weak
coupling BCS scheme. The microscopic parameters, extracted by fitting the
transport data with a percolative model, yield a consistent description of the
dependence of the average intra-puddle critical temperature and superfluid
density on the carrier density.Comment: 7 pages with 3 figures + supplemental material (4 pages and 5
figures
- …