1,677 research outputs found

    Theory of fluctuation conductivity from interband pairing in pnictide superconductors

    Get PDF
    We derive the effective action for superconducting fluctuations in a four-band model for pnictides, discussing the emergence of a single critical mode out of a dominant interband pairing mechanism. We then apply our model to calculate the paraconductivity in two-dimensional and layered three-dimensional systems, and compare our results with recent resistivity measurements in SmFeAsOFComment: 4 pages, 1 figure; final versio

    Statics and dynamics of charge fluctuations in the t-J model

    Full text link
    The equation for the charge vertex γ\gamma of the t−Jt-J model is derived and solved in leading order of an 1/N expansion, working directly in terms of Hubbard operators. Various quantities which depend crucially on γ\gamma are then calculated, such as the life time and the transport life time of electrons due to a charge coupling to other degrees of freedom and the charge-charge correlation function. Our results show that the static screening of charges and the dynamics of charge fluctuations depend only weakly on JJ and are mainly determined by the constraint of having no double occupancies of sites.Comment: 10 latex pages, 4 figures as post-script file

    Effect of mesoscopic inhomogeneities on local tunnelling density of states

    Full text link
    We carry out a theoretical analysis of the momentum dependence of the Fourier-transformed local density of states (LDOS) in the superconducting cuprates within a model considering the interference of quasiparticles scattering on quenched impurities. The impurities introduce an external scattering potential, which is either nearly local in space or it can acquire a substantial momentum dependence due to a possible strong momentum dependence of the electronic screening near a charge modulation instability. The key new effect that we introduce is an additional mesoscopic disorder aiming to reproduce the inhomogeneities experimentally observed in scanning tunnelling microscopy. The crucial effect of this mesoscopic disorder is to give rise to point-like spectroscopic features, to be contrasted with the curve-like shape of the spectra previously calculated within the interfering-quasiparticle schemes. It is also found that stripe-like charge modulations play a relevant role to correctly reproduce all the spectral features of the experiments.Comment: 11 pages and 5 figure

    Effective medium theory for superconducting layers: A systematic analysis including space correlation effects

    Full text link
    We investigate the effects of mesoscopic inhomogeneities on the metal-superconductor transition occurring in several two-dimensional electron systems. Specifically, as a model of systems with mesoscopic inhomogeneities, we consider a random-resistor network, which we solve both with an exact numerical approach and by the effective medium theory. We find that the width of the transition in these two-dimensional superconductors is mainly ruled by disorder rather than by fluctuations. We also find that "tail" features in resistivity curves of interfaces between LaAlO3 or LaTiO3 and SrTiO3 can arise from a bimodal distribution of mesoscopic local Tc's and/or substantial space correlations between the mesoscopic domains.Comment: 12 pages, 10 figure

    Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates

    Full text link
    We consider the lightly doped cuprates Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} and La2−x_{2-x}Srx_xCuO4_4 (with x=0.02x=0.02,0.04), where the presence of a fluctuating nematic state has often been proposed as a precursor of the stripe (or, more generically, charge-density wave) phase, which sets in at higher doping. We phenomenologically assume a quantum critical character for the longitudinal and transverse nematic, and for the charge-ordering fluctuations, and investigate the effects of these fluctuations in Raman spectra. We find that the longitudinal nematic fluctuations peaked at zero transferred momentum account well for the anomalous Raman absorption observed in these systems in the B2gB_{2g} channel, while the absence of such effect in the B1gB_{1g} channel may be due to the overall suppression of Raman response at low frequencies, associated with the pseudogap. While in Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} the low-frequency lineshape is fully accounted by longitudinal nematic collective modes alone, in La2−x_{2-x}Srx_xCuO4_4 also charge-ordering modes with finite characteristic wavevector are needed to reproduce the shoulders observed in the Raman response. This different involvement of the nearly critical modes in the two materials suggests a different evolution of the nematic state at very low doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201

    Spin and energy relaxation in germanium studied by spin-polarized direct-gap photoluminescence

    Full text link
    Spin orientation of photoexcited carriers and their energy relaxation is investigated in bulk Ge by studying spin-polarized recombination across the direct band gap. The control over parameters such as doping and lattice temperature is shown to yield high polarization degree, namely larger than 40%, as well as a fine-tuning of the angular momentum of the emitted light with a complete reversal between right- and left-handed circular polarization. By combining the measurement of the optical polarization state of band-edge luminescence and Monte Carlo simulations of carrier dynamics, we show that these very rich and complex phenomena are the result of the electron thermalization and cooling in the multi-valley conduction band of Ge. The circular polarization of the direct-gap radiative recombination is indeed affected by energy relaxation of hot electrons via the X valleys and the Coulomb interaction with extrinsic carriers. Finally, thermal activation of unpolarized L valley electrons accounts for the luminescence depolarization in the high temperature regime

    Charge-fluctuation contribution to the Raman response in superconducting cuprates

    Full text link
    We calculate the Raman response contribution due to collective modes, finding a strong dependence on the photon polarizations and on the characteristic wavevectors of the modes. We compare our results with recent Raman spectroscopy experiments in underdoped cuprates, La2−xSrxCuO4La_{2-x}Sr_xCuO_4 and (Y1.97Ca0.3)Ba2CuO6.05(Y_{1.97}Ca_{0.3})Ba_2CuO_{6.05}, where anomalous low-energy peaks are observed, which soften upon lowering the temperature. We show that the specific dependence on doping and on photon polarizations of these peaks is only compatible with charge collective excitations at finite wavelength.Comment: 5 pages, 3 figure

    3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks

    Full text link
    In recent years, numerical models have become popular and powerful tools to investigate the electromagnetic behavior of superconductors. One domain where this advances are most necessary is the 3D modeling of the electromagnetic behavior of superconductors. For this purpose, a benchmark problem consisting of superconducting cube subjected to an AC magnetic field perpendicular to one of its faces has been recently defined and successfully solved. In this work, a situation more relevant for applications is investigated: a superconducting parallelepiped bulk with the magnetic field parallel to two of its faces and making an angle with the other one without and with a further constraint on the possible directions of the current. The latter constraint can be used to model the magnetization of a stack of high-temperature superconductor tapes, which are electrically insulated in one direction. For the present study three different numerical approaches are used: the Minimum Electro-Magnetic Entropy Production (MEMEP) method, the HH-formulation of Maxwell's equations and the Volume Integral Method (VIM) for 3D eddy currents computation. The results in terms of current density profiles and energy dissipation are compared, and the differences in the two situations of unconstrained and constrained current flow are pointed out. In addition, various technical issues related to the 3D modeling of superconductors are discussed and information about the computational effort required by each model is provided. This works constitutes a concrete result of the collaborative effort taking place within the HTS numerical modeling community and will hopefully serve as a stepping stone for future joint investigations

    Wo3 and ionic liquids: A synergic pair for pollutant gas sensing and desulfurization

    Get PDF
    This review deals with the notable results obtained by the synergy between ionic liquids (ILs) and WO3 in the field of pollutant gas sensing and sulfur removal pretreatment of fuels. Starting from the known characteristics of tungsten trioxide as catalytic material, many authors have proposed the use of ionic liquids in order to both direct WO3 production towards controllable nanostructures (nanorods, nanospheres, etc.) and to modify the metal oxide structure (incorporating ILs) in order to increase the gas adsorption ability and, thus, the catalytic efficiency. Moreover, ionic liquids are able to highly disperse WO3 in composites, thus enhancing the contact surface and the catalytic ability of WO3 in both hydrodesulfurization (HDS) and oxidative desulfurization (ODS) of liquid fuels. In particular, the use of ILs in composite synthesis can direct the hydrogenation process (HDS) towards sulfur compounds rather than towards olefins, thus preserving the octane number of the fuel while highly reducing the sulfur content and, thus, the possibility of air pollution with sulfur oxides. A similar performance enhancement was obtained in ODS, where the high dispersion of WO3 (due to the use of ILs during the synthesis) allows for noteworthy results at very low temperatures (50â—¦ C)
    • …
    corecore