82 research outputs found

    Tissue adhesives for meniscus tear repair:an overview of current advances and prospects for future clinical solutions

    Get PDF
    Contains fulltext : 171814.pdf (publisher's version ) (Open Access)Menisci are crucial structures in the knee joint as they play important functions in load transfer, maintaining joint stability and in homeostasis of articular cartilage. Unfortunately, ones of the most frequently occurring knee injuries are meniscal tears. Particularly tears in the avascular zone of the meniscus usually do not heal spontaneously and lead to pain, swelling and locking of the knee joint. Eventually, after a (partial) meniscectomy, they will lead to osteoarthritis. Current treatment modalities to repair tears and by that restore the integrity of the native meniscus still carry their drawbacks and a new robust solution is desired. A strong tissue adhesive could provide such a solution and could potentially improve on sutures, which are the current gold standard. Moreover, a glue could serve as a carrier for biological compounds known to enhance tissue healing. Only few tissue adhesives, e.g., Dermabond((R)) and fibrin glue, are already successfully used in clinical practice for other applications, but are not considered suitable for gluing meniscus tissue due to their sub-optimal mechanical properties or toxicity. There is a growing interest and research field focusing on the development of novel polymer-based tissue adhesives, but up to now, there is no material specially designed for the repair of meniscal tears. In this review, we discuss the current clinical gold standard treatment of meniscal tears and present an overview of new developments in this field. Moreover, we discuss the properties of different tissue adhesives for their potential use in meniscal tear repair. Finally, we formulate recommendations regarding the design criteria of material properties and adhesive strength for clinically applicable glues for meniscal tears

    POLY(TRIMETHYLENE CARBONATE)AND POLY(D,L-LACTIC ACID) MODIFY HUMAN DENDRITIC CELL RESPONSES TO STAPHYLOCOCCI BUT DO NOT AFFECT Th1 AND Th2 CELL DEVELOPMENT

    Get PDF
    Biomaterial-associated infections (BAIs) are frequent complications in the use of medical devices (biomaterials) correlated with considerable patient discomfort and high treatment costs. The presence of a biomaterial in the host causes derangement of local immune responses increasing susceptibility to infection. Dendritic cells (DCs) have an important role in directing the nature of immune responses by activating and controlling CD4+ T helper (Th) cell responses. To assess the immunomodulatory effect of the combined presence of biomaterials and Staphylococcus aureus (S. aureus) or Staphylococcus epidermidis (S. epidermidis), DC-mediated T cell proliferation and Th1/Th2 cell development were measured using an in vitro human cell system. Poly(trimethylene carbonate) (PTMC) and poly(D,L-lactic acid) (PDLLA) modified the production of the DC pro-inflammatory cytokines TNF-α, IL-6 and IL-23 in response to S. aureus and S. epidermidis. However, this modified cytokine production did not cause differences in Th1/Th2 cell polarisation, showing a Th1 cell predominance. In the absence of staphylococci, neither of the biomaterials induced DC-mediated T cell proliferation or Th1/Th2 cell polarisation. Moreover, either in the absence or presence of the biomaterials, S. aureus was a more potent inducer of DC cytokine secretion, T cell proliferation and Th1 cell development than S. epidermidis. In conclusion, although PTMC and PDLLA modulated DC cytokine responses to staphylococci, this did not alter the resulting Th cell development. This result suggested that, in this human cell model, Th1/Th2 cell responses were mainly determined by the species of bacteria and that PTMC or PDLLA did not detectably influence these responses

    Aliphatic isocyanurates and polyisocyanurate networks

    Get PDF
    The production, processing, and application of aliphatic isocyanate (NCO)-based thermosets such as polyurethane coatings and adhesives are generally limited by the surprisingly high viscosity of tri-functionality and higherfunctionality isocyanurates. These compounds are essential crosslinking additives for network formation. However, the mechanism by which these high viscosities are caused is not yet understood. In this work, model aliphatic isocyanurates were synthesized and isolated in high purity (>99%), and their viscosities were accurately determined. It was shown that the presence of the NCO group has a strong influence on the viscosity of the system. From density functional theory calculations, a novel and significant bimolecular binding potential of À8.7 kJ/mol was identified between NCO groups and isocyanurate rings, confirming the important role of the NCO group. This NCO-to-ring interaction was proposed to be the root cause for the high viscosities observed for NCO-functional isocyanurate systems. Molecular dynamics simulations carried out to further confirm this influence also suggest that the NCO-toring interaction causes a significant additional contribution to viscosity. Finally, model functional isocyanurates were further reacted into densely crosslinked polyisocyanurate networks which showed interesting material properties

    A biodegradable antibiotic delivery system based on poly-(trimethylene carbonate) for the treatment of osteomyelitis

    Get PDF
    Background and purpose Many investigations on biodegradable materials acting as an antibiotic carrier for local drug delivery are based on poly(lactide). However, the use of poly(lactide) implants in bone has been disputed because of poor bone regeneration at the site of implantation. Poly(trimethylene carbonate) (PTMC) is an enzymatically degradable polymer that does not produce acidic degradation products. We explored the suitability of PTMC as an antibiotic releasing polymer for the local treatment of osteomyelitis

    Ectopic bone formation in cell-seeded poly(ethylene oxide)/poly(butylene terephthalate) copolymer scaffolds of varying porosity

    Get PDF
    Scaffolds from poly(ethylene oxide) and poly(butylene terephthalate), PEOT/PBT, with a PEO molecular weight of 1,000 and a PEOT content of 70 weight% (1000PEOT70PBT30) were prepared by leaching salt particles (425–500 μm). Scaffolds of 73.5, 80.6 and 85.0% porosity were treated with a CO2 gas plasma and seeded with rat bone marrow stromal cells (BMSCs). After in vitro culture for 7 days (d) in an osteogenic medium the scaffolds were subcutaneously implanted for 4 weeks in nude mice. Poly(d, l-lactide) (PDLLA) and biphasic calcium phosphate (BCP) scaffolds were included as references. After 4 weeks (wks) all scaffolds showed ectopic formation of bone and bone marrow. For the scaffolds of different porosities, no significant differences were observed in the relative amounts of bone (7–9%) and bone marrow (6–11%) formed, even though micro computed tomography (μ-CT) data showed considerable differences in accessible pore volume and surface area. 1000PEOT70PBT30 scaffolds with a porosity of 85% could not maintain their original shape in vivo. Surprisingly, 1000PEOT70PBT30 scaffolds with a porosity of 73.5% showed cartilage formation. This cartilage formation is most likely due to poorly accessible pores in the scaffolds, as was observed in histological sections. μ-CT data showed a considerably smaller accessible pore volume (as a fraction of the total volume) than in 1000PEOT70PBT30 scaffolds of 80.6 and 85.0% porosity. BMSC seeded PDLLA (83.5% porosity) and BCP scaffolds (29% porosity) always showed considerably more bone and bone marrow formation (bone marrow formation is approximately 40%) and less fibrous tissue ingrowth than the 1000PEOT70PBT30 scaffolds. The scaffold material itself can be of great influence. In more hydrophobic and rigid scaffolds like the PDLLA or BCP scaffolds, the accessibility of the pore structure is more likely to be preserved under the prevailing physiological conditions than in the case of hydrophilic 1000PEOT70PBT30 scaffolds. Scaffolds prepared from other PEOT/PBT polymer compositions, might prove to be more suited

    Tissue adhesives for meniscus tear repair: an overview of current advances and prospects for future clinical solutions

    Full text link

    Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers

    Get PDF
    The development of tough hydrogels is an essential but challenging topic in biomaterials research that has received much attention over the past years. By the combinatorial synthesis of polymer networks and hydrogels based on prepolymers with different properties, new materials with widely varying characteristics and unexpected properties may be identified. In this paper, we report on the properties of combinatorial poly(urethane-isocyanurate) (PUI) type polymer networks that were synthesized by the trimerization of mixtures of NCO-functionalized poly(ethylene glycol) (PEG), poly(propylene gylcol) (PPG), poly(ε-caprolactone) (PCL) and poly(trimethylene carbonate) (PTMC) prepolymers in solution. The resulting polymer networks showed widely varying material properties. Combinatorial PUI networks containing at least one hydrophilic PEG component showed high water uptakes of >100 wt%. The resulting hydrogels demonstrated elastic moduli of up to 10.1 MPa, ultimate tensile strengths of up to 9.8 MPa, elongation at break values of up to 624.0% and toughness values of up to 53.4 MJ m−3. These values are exceptionally high and show that combinatorial PUI hydrogels are among the toughest hydrogels reported in the literature. Also, the simple two-step synthesis and wide range of suitable starting materials make this synthesis method more versatile and widely applicable than the existing methods for synthesizing tough hydrogels. An important finding of this work is that the presence of a hydrophobic network component significantly enhances the toughness and tensile strength of the combinatorial PUI hydrogels in the hydrated state. This enhancement is the largest when the hydrophobic network component is crystallizable in nature. In fact, the PUI hydrogels containing a crystallizable hydrophobic network component are shown to be semi-crystalline in the water-swollen state. Due to their high toughness values in the water-swollen state together with their water uptake values, elastic moduli and ultimate tensile strengths, the developed hydrogels are expected to be promising materials for biomedical coating- and adhesive applications, as well as for tissue-engineering. Statement of significance: The development of tough hydrogels is a challenging topic that has received much attention over the past years. At present, double network type hydrogels are considered state-of-the-art in the field, demonstrating toughness values of several tens of MJ m−3. However, in terms of ease and versatility of the synthesis method, the possibilities are limited using a double network approach. In this work, we present combinatorial poly(urethane-isocyanurate) type polymer networks and hydrogels, synthesized by the trimerization of mixtures of NCO-functionalized prepolymers. The resulting hydrogels demonstrate exceptionally high toughness values of up to 53 MJ m−3, while the synthesis method is versatile and widely applicable. This new class of hydrogels is therefore considered highly promising in the future development of load-bearing biomaterials
    • …
    corecore