2,325 research outputs found

    Casimir densities for a spherical boundary in de Sitter spacetime

    Full text link
    Two-point functions, mean-squared fluctuations, and the vacuum expectation value of the energy-momentum tensor operator are investigated for a massive scalar field with an arbitrary curvature coupling parameter, subject to a spherical boundary in the background of de Sitter spacetime. The field is prepared in the Bunch-Davies vacuum state and is constrained to satisfy Robin boundary conditions on the sphere. Both the interior and exterior regions are considered. For the calculation in the interior region, a mode-summation method is employed, supplemented with a variant of the generalized Abel-Plana formula. This allows us to explicitly extract the contributions to the expectation values which come from de Sitter spacetime without boundaries. We show that the vacuum energy-momentum tensor is non-diagonal with the off-diagonal component corresponding to the energy flux along the radial direction. With dependence on the boundary condition and the mass of the field, this flux can be either positive or negative. Several limiting cases of interest are then studied. In terms of the curvature coupling parameter and the mass of the field, two very different regimes are realized, which exhibit monotonic and oscillatory behavior of the vacuum expectation values, respectively, far from the sphere. The decay of the boundary induced expectation values at large distances from the sphere is shown to be power-law (monotonic or oscillating), independent of the value of the field mass.Comment: 32 pages, 4 figures, new paragraph about generalizations, discussion and references added, accepted for publication in Phys. Rev.

    Synchrotron radiation from a charge moving along a helical orbit inside a dielectric cylinder

    Full text link
    The radiation emitted by a charged particle moving along a helical orbit inside a dielectric cylinder immersed into a homogeneous medium is investigated. Expressions are derived for the electromagnetic potentials, electric and magnetic fields, and for the spectral-angular distribution of radiation in the exterior medium. It is shown that under the Cherenkov condition for dielectric permittivity of the cylinder and the velocity of the particle image on the cylinder surface, strong narrow peaks are present in the angular distribution for the number of radiated quanta. At these peaks the radiated energy exceeds the corresponding quantity for a homogeneous medium by some orders of magnitude. The results of numerical calculations for the angular distribution of radiated quanta are presented and they are compared with the corresponding quantities for radiation in a homogeneous medium. The special case of relativistic charged particle motion along the direction of the cylinder axis with non-relativistic transverse velocity (helical undulator) is considered in detail. Various regimes for the undulator parameter are discussed. It is shown that the presence of the cylinder can increase essentially the radiation intensity.Comment: 18 pages, 8 EPS figure

    Whightman function and scalar Casimir densities for a wedge with a cylindrical boundary

    Full text link
    Whightman function, vacuum expectation values of the field square, and the energy-momentum tensor are investigated for a scalar field inside a wedge with and without a coaxial cylindrical boundary. Dirichlet boundary conditions are assumed on the bounding surfaces. The vacuum energy-momentum tensor is evaluated in the general case of the curvature coupling parameter. Making use of a variant of the generalized Abel-Plana formula, expectation values are presented as the sum of two terms. The first one corresponds to the geometry without a cylindrical boundary and the second one is induced by the presence of this boundary. The asymptotic behaviour of the field square, vacuum energy density and stresses near the boundaries are investigated. The additional vacuum forces acting on the wedge sides due the presence of the cylindrical boundary are evaluated and it is shown that these forces are attractive. As a limiting case, the geometry of two parallel plates perpendicularly intersected by a third one is analyzed.Comment: 19 pages, 6 figures, new section is added on the VEVs for the region outside the cylidrical shell, discussion and references added, accepted for publication in J. Phys.

    Electromagnetic field and radiation for a charge moving along a helical trajectory inside a waveguide with dielectric filling

    Full text link
    We investigate the electromagnetic field generated by a point charge moving along a helical trajectory inside a circular waveguide with conducting walls filled by homogeneous dielectric. The parts corresponding to the radiation field are separated and the formulae for the radiation intensity are derived for both TE and TM waves. It is shown that the main part of the radiated quanta is emitted in the form of the TE waves. Various limiting cases are considered. The results of the numerical calculations show that the insertion of the waveguide provides an additional mechanism for tuning the characteristics of the emitted radiation by choosing the parameters of the waveguide and filling medium.Comment: 17 pages, 9 figures, discussion, graphs, and references adde

    Linear Confinement for Mesons and Nucleons in AdS/QCD

    Full text link
    By using a new parametrization of the dilaton field and including a cubic term in the bulk scalar potential, we realize linear confinement in both meson and nucleon sectors within the framework of soft-wall AdS/QCD. At the same time this model also correctly incorporate chiral symmetry breaking. We compare our resulting mass spectra with experimental data and find good agreement between them.Comment: 14 pages, published version in JHE

    A Matrix Model for Baryons and Nuclear Forces

    Get PDF
    We propose a new matrix model describing multi-baryon systems. We derive the action from open string theory on the wrapped baryon vertex D-branes embedded in the D4-D8 model of large N holographic QCD. The positions of k baryons are unified into k x k matrices, with spin/isospin of the baryons encoded in a set of k-vectors. Holographic baryons are known to be very small in the large 't Hooft coupling limit, and our model offers a better systematic approach to dynamics of such baryons at short distances. We compute energetics and spectra (k=1), and also short-distance nuclear force (k=2). In particular, we obtain a new size of the holographic baryon and find a precise form of the repulsive core of nucleons. This matrix model complements the instanton soliton picture of holographic baryons, whose small size turned out to be well below the natural length scale of the approximation involved there. Our results show that, nevertheless, the basic properties of holographic baryons obtained there are robust under stringy corrections within a few percents.Comment: 30 pages. v3: more comments added, published versio
    • …
    corecore