3 research outputs found

    Methodology for the Practical Implementation of Monitoring Temperature Conditions over Vast Sea Areas Using Acoustic Thermometry

    No full text
    The methodological and technical possibilities of monitoring temperature fields in the Sea of Japan by acoustic thermometry methods are presented. The proposed tomographic method for monitoring the dynamics and structure of water is based on the transmission and reception of complex phase-shift keyed acoustic signals on a diagnosed track with the determination of the travel time along various ray trajectories, followed by the sound speed (temperature) determination. The physical prerequisites for the practical implementation of thermometric studies at large distances are based on the acoustic “mudslide” effect—the phenomenon of the acoustic energy “injection“ from the near-bottom shelf area to the underwater sound channel of the deep ocean. Based on the Sea of Japan example, an acoustic thermometry system based on tomographic schemes with mobile and stationary hydroacoustic sources for promising work in the field of oceanic climatology is proposed. For numerical calculations of the signal propagation channels’ impulse responses between sources and receivers, a specialized database of oceanological information was formed for the northwestern part of the Sea of Japan. The database includes all available data from organizations in Russia, Japan, North Korea, the Republic of Korea, and the United States (23,247 stations completed from 1925 to 2017). In the example of the Sea of Japan, a high-precision acoustic thermometry system based on tomographic schemes with developed mobile and stationary hydroacoustic transmitting and receiving systems was proposed and experimentally tested

    Intrinsically disordered regions in TRPV2 mediate protein-protein interactions

    No full text
    Abstract Transient receptor potential (TRP) ion channels are gated by diverse intra- and extracellular stimuli leading to cation inflow (Na+, Ca2+) regulating many cellular processes and initiating organismic somatosensation. Structures of most TRP channels have been solved. However, structural and sequence analysis showed that ~30% of the TRP channel sequences, mainly the N- and C-termini, are intrinsically disordered regions (IDRs). Unfortunately, very little is known about IDR ‘structure’, dynamics and function, though it has been shown that they are essential for native channel function. Here, we imaged TRPV2 channels in membranes using high-speed atomic force microscopy (HS-AFM). The dynamic single molecule imaging capability of HS-AFM allowed us to visualize IDRs and revealed that N-terminal IDRs were involved in intermolecular interactions. Our work provides evidence about the ‘structure’ of the TRPV2 IDRs, and that the IDRs may mediate protein-protein interactions
    corecore