2 research outputs found

    Theory of fusion hindrance and synthesis of the superheavy elements

    Full text link
    The two-step model for fusion reactions of massive systems is briefly reviewed.By the use of fusion probabilities obtained by the model and of survival probabilities obtained by the new statistical code, we predict residue cross sections for 48Ca+actinide systems leading to superheavy elements with Z=114, 116 and 118.Comment: 7 pages, 4 figures, Halong Bay meeting proceedin

    Two-Step Model of Fusion for Synthesis of Superheavy Elements

    Get PDF
    A new model is proposed for fusion mechanisms of massive nuclear systems where so-called fusion hindrance exists. The model describes two-body collision processes in an approaching phase and shape evolutions of an amalgamated system into the compound nucleus formation. It is applied to 48^{48}Ca-induced reactions and is found to reproduce the experimental fusion cross sections extremely well, without any free parameter. Combined with the statistical decay theory, residue cross sections for the superheavy elements can be readily calculated. Examples are given.Comment: 4 pages, 4 figure
    corecore