152 research outputs found

    Chemical composition of the essential oils from leaves and flowers of Passiflor sexocellata and Passiflora trifasciata

    Get PDF
    The chemical composition of the essential oils of Passiflora sexocellata and Passiflora trifasciata (Passifloraceae, subgenus Decaloba) were studied for the first time. Essential oils were obtained by steam distillation of fresh leaves and flowers. The chemical composition was assessed by using GC/FID and GC/MS. For P. sexocellata leaves, the optimized analytical procedure allowed the identification of 33 compounds (75% of the total oil composition) and 29 (74% of the total oil composition) in flowers. Regarding P. trifasciata, 35 compounds (76% of the total oil composition) were detected in leaves and 32 (71% of the total oil composition) in flowers. Terpenes and mono unsaturated hydrocarbons were quantified as major constituents of the volatile fraction in flowers (17.0 to 52.6%) and (13.7 to 20.0%). Organic acids were detected in both leaves and flowers with a percentage ranging from 3.3% to 32.0%. Aldehydes were also detected in leaves (12.6 to 41.4%) and in flowers (1.4 to 5.1%). The GC/MS analyzes allowed alcohols to be detected in leaves (20.6 to 42.9%) and in flowers (8.2 to 18.1%). These compounds represent the most important feature of the large Passiflora family. Moreover, a critical role in the coevolved mechanisms of pollinators' interaction has been investigated

    Formaldehyde, Oxidative Stress, and FeNO in Traffic Police Officers Working in Two Cities of Northern Italy

    Get PDF
    Personal air formaldehyde (air-FA) was measured as risk factor of airways inflammation and oxidative stress (SO) induction. Overall, 154 police officers were enrolled from two differently urbanised Italian cities, Turin and Pavia. Urinary F2t-isoprostane (15-F2t-IsoP), a prostaglandin-like compound, was quantified as a biomarker of general OS in vivo and fractional exhaled nitric oxide (FeNO) was measured for monitoring local inflammatory processes. Urinary cotinine was quantified as a biomarker of tobacco smoking exposure. Traffic police officers living in Turin showed an increased level of log air-FA (p < 0.001), equal to +53.6% (p < 0.001). Log air-(FA) mean values were 3.38 (C.I. 95% 3.33–3.43) and 2.84 (C.I. 95% 2.77–2.92) in Turin and Pavia, respectively. Log (air-FA) was higher in “outdoor workers” (3.18, C.I. 95% 3.13–3.24, p = 0.035) compared to “indoor workers”, showing an increase of +9.3%, even controlling for sex and city. The analyses on 15-F2t-IsoP and FeNO, both adjusted for log air-FA, highlighted that OS and inflammation were higher (+66.8%, p < 0.001 and +75%, p < 0.001, respectively) in Turin traffic police officers compared to those from Pavia. Our findings suggest that even low exposures to traffic-related emissions and urbanisation may influence both general oxidative stress levels and local inflammation

    Microwave-Assisted and Conventional Extractions of Volatile Compounds from Rosa x damascena Mill. Fresh Petals for Cosmetic Applications

    Get PDF
    Rosa x damascena Mill. essential oil is mainly used in the cosmetics and perfumery industry, but it also finds application in the food industry as a flavoring agent. The chemical composition of essential oils is affected by environment, soil, harvesting technique, storage condition, and extraction methods. Nowadays, the study and design of greener, more efficient, and sustainable extractive procedures is the main and strategic focus in the chemical research and development of botanical derivatives, especially as regards fragrances and essential oils. Several technologies are available, and the best method to use depends on the desired chemicals, but conventional extractive processes are often laborious and time-consuming, involve large amounts of solvents, and may cause the partial loss of volatiles, affecting the quality of the final product. In the last decade, microwave irradiation has been successfully applied to classical techniques, often improving the general extractive efficiency and extract quality. In the present paper, as a preliminary analytical screening approach, two microwave-mediated techniques, Solvent-Free Microwave Extraction (SFME) and Microwave Hydrodiffusion and Gravity (MHG), and two conventional procedures, Hydrodistillation (HD) and Steam Distillation (SD), were applied and compared for the extraction of volatile compounds from R. x damascena fresh petals to highlight differences and advantages of the selected procedure and of the obtained extracts useful in a cosmetic context as fragrances or active ingredients. The chemical composition of the extracts was investigated by GC-MS and GC-FID. Sixty-one components, distributed in the four techniques, were identified. SD and HD are dominated by oxygenated terpenes (59.01% and 50.06%, respectively), while MHG and SFME extracts are dominated by alcohols (61.67% and 46.81%, respectively). A relevant variability in the composition of the extracts relating to the extraction techniques used was observed. To point out the correlation between the process and composition of the obtained natural products, principal component analysis (PCA) of the data extracted from GC-FID was used. Taking into account a cosmetic application, SFME shows several advantages when compared with the other procedures. The extract (obtained in a significantly higher amount) contains a meaningful lower level of potential fragrance allergenic compounds and quite a double amount of benzyl alcohol and 2-phenyl ethanol that can also enhance the preservative action in personal care products
    corecore