433 research outputs found

    Regional-scale Predictions of Agricultural N Losses in an Area with a High Livestock Density

    Get PDF
    The quantification of the N losses in territories characterised by intensive animal stocking is of primary importance. The development of simulation models coupled to a GIS, or of simple environmental indicators, is strategic to suggest the best specific management practices. The aims of this work were: a) to couple a GIS to a simulation model in order to predict N losses; b) to estimate leaching and gaseous N losses from a territory with intensive livestock farming; c) to derive a simplified empirical metamodel from the model output that could be used to rank the relative importance of the variables which influence N losses and to extend the results to homogeneous situations. The work was carried out in a 7773 ha area in the Western Po plain in Italy. This area was chosen because it is characterised by intensive animal husbandry and might soon be included in the nitrate vulnerable zones. The high N load, the shallow water table and the coarse type of sub-soil sediments contribute to the vulnerability to N leaching. A CropSyst simulation model was coupled to a GIS, to account for the soil surface N budget. A linear multiple regression approach was used to describe the influence of a series of independent variables on the N leaching, the N gaseous losses (including volatilisation and denitrification) and on the sum of the two. Despite the fact that the available GIS was very detailed, a great deal of information necessary to run the model was lacking. Further soil measurements concerning soil hydrology, soil nitrate content and water table depth proved very valuable to integrate the data contained in the GIS in order to produce reliable input for the model. The results showed that the soils influence both the quantity and the pathways of the N losses to a great extent. The ratio between the N losses and the N supplied varied between 20 and 38%. The metamodel shows that manure input always played the most important role in determining the N losses. Other important factors in draining soils were mineral fertilisation and potential drainage, which played a minor role in poorly draining soils. The drainage of the soil and the water table depth also played an important role by influencing the soil water content and N losses. The differences among the crops resulted to be very important and it was impossible to produce any indicator to predict N losses for all the crops together. Estimations of total losses are more reliable than estimations of leaching alone. Estimations of total N losses for maize and meadows are more reliable than for winter cereals

    Agronomic benefits and detriments of using biochar

    Get PDF
    The use of biochar, a secondary product of pyrolysis after syngas and bio-oil production for bioenergy, is promoted for agricultural purposes. Its potential for C sequestration and greenhouse gas emission reduction can help for mitigating climate change and potential adverse impacts to ecosystems. Additionally, it represents an alternative means for containing water and atmospheric pollution ascribed to large volumes of crop and animal wastes. As a soil amendment, biochar has received increased interest due to its role in enhancing nutrient- and water-use efficiencies. Please click on the file below for full content of the abstract

    Regulations concerning agriculture and air pollution

    Get PDF
    The main issues related to the atmospheric pollution are the stratospheric ozone depletion, the transboundary air pollution, the troposphere air quality and the climate change. The three last decades have seen the birth of several measures for the atmosphere safeguard. Agricultural activities play a key role in determining, preventing and mitigating atmospheric pollution. The emission to atmosphere of different ozone-depleting substances is regulated by the Montreal Protocol. The role of agriculture activity in ozone depletion is linked to the utilization of methyl bromide as soil sterilant and to the emission of nitrogen oxides and nitrous oxide, from agricultural soils. The Convention on long-range transboundary air pollution regulates the emission of several pollutants, i.e. sulphur dioxide, nitrogen oxides, ammonia, non methane volatile organic compounds, carbon monoxide, heavy metals, persistent organic pollutants, and tropospheric ozone. The agriculture sector is responsible for a large part of the emissions of ammonia and nitrogen oxides, mainly through manure management and nitrogen fertilization, and of most persistent organic pollutants, largely used in the past as insecticides and fungicides. The increase of the greenhouse gases (GHGs) concentration in the atmosphere is under the control of the Kyoto Protocol. Agriculture accounts for 59-63% of global non-CO2 GHGs emissions but at the same time it contributes to the atmospheric CO2 concentration stabilisation through the substitution of fossil fuels by biofuels and the sequestration of C in soil and vegetal biomass. In this paper we provide an outline of the numerous scientific and legislative initiatives aimed at protecting the atmosphere, and we analyse in detail the agriculture sector in order to highlight both its contribution to atmospheric pollution and the actions aimed at preventing and mitigating it

    Crop response to soils amended with biochar: Expected benefits and unintended risks

    Get PDF
    Biochar (BC) from biomass waste pyrolysis has been widely studied due to its ability to increase carbon sequestration, reduce greenhouse gas emissions, and enhance both crop growth and soil quality. This review summarises the current knowledge of BC production, characterisation, and types, with a focus on its positive effects on crop yield and soil properties vs the unintended risks associated with these effects. Biochar-amended soils enhance crop growth and yield via several mechanisms: expanded plant nutrient and water availability through increased use efficiencies, improved soil quality, and suppression of soil and plant diseases. Yield response to BC has been shown to be more evident in acidic and sandy soils than in alkaline and fine-textured soils. Biochar composition and properties vary considerably with feedstock and pyrolysis conditions so much that its concentrations of toxic compounds and heavy metals can negatively impact crop and soil health. Consequently, more small-scale and greenhouse-sited studies are in process to investigate the role of BC/soil/crop types on crop growth, and the mechanisms by which they influence crop yield. Similarly, a need exists for long-term, field-scale studies on the effects (beneficial and harmful) of BC amendment on soil health and crop yields, so that production guidelines and quality standards may be developed for BCs derived from a range of feedstocks
    corecore