20,598 research outputs found
Gambling in Great Britain:a response to Rogers
A recent issue of Practice: Social Work in Action featured a paper by Rogers that examined whether the issue of problem gambling was a suitable case for social work. Rogers’ overview was (in various places) out of date, highly selective, contradictory, presented unsupported claims and somewhat misleading. Rogers’ paper is to be commended for putting the issue of problem gambling on the social work agenda. However, social workers need up-to-date information and contextually situated information if they are to make informed decisions in helping problem gamblers
Consistent Quantum Counterfactuals
An analysis using classical stochastic processes is used to construct a
consistent system of quantum counterfactual reasoning. When applied to a
counterfactual version of Hardy's paradox, it shows that the probabilistic
character of quantum reasoning together with the ``one framework'' rule
prevents a logical contradiction, and there is no evidence for any mysterious
nonlocal influences. Counterfactual reasoning can support a realistic
interpretation of standard quantum theory (measurements reveal what is actually
there) under appropriate circumstances.Comment: Minor modifications to make it agree with published version. Latex 8
pages, 2 figure
Anomalies of weakened decoherence criteria for quantum histories
The theory of decoherent histories is checked for the requirement of
statistical independence of subsystems. Strikingly, this is satisfied only when
the decoherence functional is diagonal in both its real a n d imaginary parts.
In particular, the condition of consistency (or weak decoherence) required for
the assignment of probabilities appears to be ruled out. The same conclusion is
obtained independently, by claiming a plausible dynamical robustness of
decoherent histories.Comment: 3pp, submitted to Phys. Rev. Let
Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit
It is shown that the optimum strategy of the eavesdropper, as described in
the preceding paper, can be expressed in terms of a quantum circuit in a way
which makes it obvious why certain parameters take on particular values, and
why obtaining information in one basis gives rise to noise in the conjugate
basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103
Cosmic microwave background constraints on the epoch of reionization
We use a compilation of cosmic microwave anisotropy data to constrain the
epoch of reionization in the Universe, as a function of cosmological
parameters. We consider spatially-flat cosmologies, varying the matter density
(the flatness being restored by a cosmological constant), the Hubble
parameter and the spectral index of the primordial power spectrum. Our
results are quoted both in terms of the maximum permitted optical depth to the
last-scattering surface, and in terms of the highest allowed reionization
redshift assuming instantaneous reionization. For critical-density models,
significantly-tilted power spectra are excluded as they cannot fit the current
data for any amount of reionization, and even scale-invariant models must have
an optical depth to last scattering of below 0.3. For the currently-favoured
low-density model with and a cosmological constant, the
earliest reionization permitted to occur is at around redshift 35, which
roughly coincides with the highest estimate in the literature. We provide
general fitting functions for the maximum permitted optical depth, as a
function of cosmological parameters. We do not consider the inclusion of tensor
perturbations, but if present they would strengthen the upper limits we quote.Comment: 9 pages LaTeX file with ten figures incorporated (uses mn.sty and
epsf). Corrects some equation typos, superseding published versio
The Nature and Location of Quantum Information
Quantum information is defined by applying the concepts of ordinary (Shannon)
information theory to a quantum sample space consisting of a single framework
or consistent family. A classical analogy for a spin-half particle and other
arguments show that the infinite amount of information needed to specify a
precise vector in its Hilbert space is not a measure of the information carried
by a quantum entity with a -dimensional Hilbert space; the latter is,
instead, bounded by log d bits (1 bit per qubit). The two bits of information
transmitted in dense coding are located not in one but in the correlation
between two qubits, consistent with this bound. A quantum channel can be
thought of as a "structure" or collection of frameworks, and the physical
location of the information in the individual frameworks can be used to
identify the location of the channel. Analysis of a quantum circuit used as a
model of teleportation shows that the location of the channel depends upon
which structure is employed; for ordinary teleportation it is not (contrary to
Deutsch and Hayden) present in the two bits resulting from the Bell-basis
measurement, but in correlations of these with a distant qubit. In neither
teleportation nor dense coding does information travel backwards in time, nor
is it transmitted by nonlocal (superluminal) influences. It is (tentatively)
proposed that all aspects of quantum information can in principle be understood
in terms of the (basically classical) behavior of information in a particular
framework, along with the framework dependence of this information.Comment: Latex 29 pages, uses PSTricks for figure
Two qubit copying machine for economical quantum eavesdropping
We study the mapping which occurs when a single qubit in an arbitrary state
interacts with another qubit in a given, fixed state resulting in some unitary
transformation on the two qubit system which, in effect, makes two copies of
the first qubit. The general problem of the quality of the resulting copies is
discussed using a special representation, a generalization of the usual Schmidt
decomposition, of an arbitrary two-dimensional subspace of a tensor product of
two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can
reproduce the results of any two qubit copying machine of this type. A simple
stochastic generalization (using a ``classical'' random signal) of the copying
machine is also considered. These copying machines provide simple embodiments
of previously proposed optimal eavesdropping schemes for the BB84 and B92
quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure
Correlation inequalities for noninteracting Bose gases
For a noninteracting Bose gas with a fixed one-body Hamiltonian H^0
independent of the number of particles we derive the inequalities _N <
_{N+1}, _N _N _N for i\neq j, \partial
_N/\partial \beta >0 and ^+_N _N. Here N_i is the occupation
number of the ith eigenstate of H^0, \beta is the inverse temperature and the
superscript + refers to adding an extra level to those of H^0. The results
follow from the convexity of the N-particle free energy as a function of N.Comment: a further inequality adde
Reflection above the barrier as tunneling in momentum space
Quantum mechanics predicts an exponentially small probability that a particle
with energy greater than the height of a potential barrier will nevertheless
reflect from the barrier in violation of classical expectations. This process
can be regarded as tunneling in momentum space, leading to a simple derivation
of the reflection probability.Comment: 7 pages, 3 figures, submitted to American Journal of Physics. Version
2: MIT preprint number added, typographical error in caption to Figure 2
correcte
Weak Lensing Determination of the Mass in Galaxy Halos
We detect the weak gravitational lensing distortion of 450,000 background
galaxies (20<R<23) by 790 foreground galaxies (R<18) selected from the Las
Campanas Redshift Survey (LCRS). This is the first detection of weak lensing by
field galaxies of known redshift, and as such permits us to reconstruct the
shear profile of the typical field galaxy halo in absolute physical units
(modulo H_0), and to investigate the dependence of halo mass upon galaxy
luminosity. This is also the first galaxy-galaxy lensing study for which the
calibration errors are negligible. Within a projected radius of 200 \hkpc, the
shear profile is consistent with an isothermal profile with circular velocity
164+-20 km/s for an L* galaxy, consistent with typical disk rotation at this
luminosity. This halo mass normalization, combined with the halo profile
derived by Fischer et al (2000) from lensing analysis SDSS data, places a lower
limit of (2.7+-0.6) x 10^{12}h^{-1} solar masses on the mass of an L* galaxy
halo, in good agreement with satellite galaxy studies. Given the known
luminosity function of LCRS galaxies, and the assumption that for galaxies, we determine that the mass within 260\hkpc of normal
galaxies contributes to the density of the Universe (for
) or for . These lensing data suggest
that (95% CL), only marginally in agreement with the usual
Faber-Jackson or Tully-Fisher scaling. This is the most
complete direct inventory of the matter content of the Universe to date.Comment: 18 pages, incl. 3 figures. Submitted to ApJ 6/7/00, still no response
from the referee after four months
- …