12,883 research outputs found

    “Space Plague”: an investigation into immersive theatre and narrative transportation effects in informal pandemic science education

    Get PDF
    Stories are fundamental to human history, culture and development. Immersive theatre has created a landscape where participants have agency within stories, and within this landscape the concept of narrative transportation provides a framework where change within stories creates change in real life. “Space Plague” is a co-designed, fully immersive theatrical experience for young people and families about a fictional pandemic. It was developed using community-based participatory action research (CBPAR) employing a novel model for engaging underserved and under-represented audiences, “SCENE”. Results confirmed that indications of narrative transportation effects were achieved, demonstrating enhanced learning and understanding alongside changing attitudes and indicated positive change when negotiating the COVID-19 crisis

    SCENE: A novel model for engaging underserved and under-represented audiences in informal science learning activities

    Get PDF
    Inequitable access to science, technology, engineering, arts and mathematics (STEAM) has been explored by multiple studies which have shown that some publics are underserved by existing informal educational and cultural provision, and under-represented in related study choices and careers. Informal science learning (ISL) and public engagement with research activities (such as science festivals) tend to attract audiences which are largely white, middle class and already engaged with STEM (science, technology, engineering and mathematics). This article describes the development of an engagement approach and model through a story-based festival (SMASHfestUK) which was specifically designed to attract new and diverse audiences, including Black and mixed-heritage families, and families living with socio-economic disadvantage. The festival was delivered on five annual occasions, each co-designed with a wide selection of stakeholders, including audiences, researchers, performers, institutions and organizations, and considered as an iterative prototype. Key messages • Engagement with STEM can be tailored to under-represented audiences by co-designing a festival format and content that resonates with those audiences. • Enquiry-based learning with participants immersed in a meaningful story provides an opportunity for participants to experience STEM with agency. • Success was built on the SCENE model (STEAM, community, enquiry, narrative, entertainment), co-designed hyperlocally, leading with free entertainment and an overarching narrativ

    Communities and narratives in neglected spaces: voices from SMASHfestUK

    Get PDF
    Many people are under-served by existing informal science learning (ISL) provisions and under-represented in STEAM (Science, Technology, Engineering, Arts, Mathematics/Medicine) study choices and careers. This paper reflects upon SMASHfestUK which was established, as both a STEAM festival and research platform, to explore methods and approaches for lowering the barriers to engagement with ISL in marginalised communities. To do this SMASHfestUK located its events in the heart of communities and worked with those communities to create those events. This paper tells their story through the voices of participating communities

    SCENE: A novel model for engaging underserved and under-represented audiences in informal science learning activities

    Get PDF
    Inequitable access to science, technology, engineering, arts and mathematics (STEAM) has been explored by multiple studies which have shown that some publics are underserved by existing informal educational and cultural provision, and under-represented in related study choices and careers. Informal science learning (ISL) and public engagement with research activities (such as science festivals) tend to attract audiences which are largely white, middle class and already engaged with STEM (science, technology, engineering and mathematics). This article describes the development of an engagement approach and model through a story-based festival (SMASHfestUK) which was specifically designed to attract new and diverse audiences, including Black and mixed-heritage families, and families living with socio-economic disadvantage. The festival was delivered on five annual occasions, each co-designed with a wide selection of stakeholders, including audiences, researchers, performers, institutions and organizations, and considered as an iterative prototype

    Asymptotic solutions of glass temperature profiles during steady optical fibre drawing

    Get PDF
    In this paper we derive realistic simplified models for the high-speed drawing of glass optical fibres via the downdraw method, that capture the fluid dynamics and heat transport in the fibre via conduction, convection and radiative heating. We exploit the small aspect ratio of the fibre and the relative orders of magnitude of the dimensionless parameters that characterize the heat transfer to reduce the problem to one- or two-dimensional systems via asymptotic analysis. The resulting equations may be readily solved numerically and in many cases admit exact analytic solutions. The systematic asymptotic breakdown presented is used to elucidate the relative importance of furnace temperature profile, convection, surface radiation and conduction in each portion of the furnace and the role of each in controlling the glass temperature.\ud \ud The models derived predict many of the qualitative features observed in the real industrial process, such as the glass temperature profile within the furnace and the sharp transition in fibre thickness. The models thus offer a desirable route to quick scenario testing, providing valuable practical information into the dependencies of the solution on the parameters and the dominant heat-transport mechanism

    Fitting Together the HI Absorption and Emission in the SGPS

    Get PDF
    In this paper we study 21-cm absorption spectra and the corresponding emission spectra toward bright continuum sources in the test region (326deg< l < 333 deg) of the Southern Galactic Plane Survey. This survey combines the high resolution of the Australia Telescope Compact Array with the full brightness temperature information of the Parkes single dish telescope. In particular, we focus on the abundance and temperature of the cool atomic clouds in the inner galaxy. The resulting mean opacity of the HI, , is measured as a function of Galactic radius; it increases going in from the solar circle, to a peak in the molecular ring of about four times its local value. This suggests that the cool phase is more abundant there, and colder, than it is locally. The distribution of cool phase temperatures is derived in three different ways. The naive, ``spin temperature'' technique overestimates the cloud temperatures, as expected. Using two alternative approaches we get good agreement on a histogram of the cloud temperatures, T(cool), corrected for blending with warm phase gas. The median temperature is about 65 K, but there is a long tail reaching down to temperatures below 20 K. Clouds with temperatures below 40 K are common, though not as common as warmer clouds (40 to 100 K). Using these results we discuss two related quantities, the peak brightness temperature seen in emission surveys, and the incidence of clouds seen in HI self-absorption. Both phenomena match what would be expected based on our measurements of and T(cool).Comment: 50 pages, 20 figure

    Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    Full text link
    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Only at low conductivity and below the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.Comment: 10 pages, 6 figures, major revision, final version, to appear in Po
    • …
    corecore