11,982 research outputs found

    On the parameters of the Kerr-NUT-(anti-)de Sitter space-time

    Full text link
    Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotation, NUT and cosmological constant) in the basic four dimensional situation.Comment: 4 pages. To appear as a Note in Classical and Quantum Gravit

    The Exact Ground State of the Frenkel-Kontorova Model with Repeated Parabolic Potential: II. Numerical Treatment

    Full text link
    A procedure is described for efficiently finding the ground state energy and configuration for a Frenkel-Kontorova model in a periodic potential, consisting of N parabolic segments of identical curvature in each period, through a numerical solution of the convex minimization problem described in the preceding paper. The key elements are the use of subdifferentials to describe the structure of the minimization problem; an intuitive picture of how to solve it, based on motion of quasiparticles; and a fast linear optimization method with a reduced memory requirement. The procedure has been tested for N up to 200.Comment: 9 RevTeX pages, using AMS-Fonts (amssym.tex,amssym.def), 3 Postscript figures, accepted by Phys.Rev.B to be published together with cond-mat/970722

    Energy of gravitational radiation in plane-symmetric space-times

    Full text link
    Gravitational radiation in plane-symmetric space-times can be encoded in a complex potential, satisfying a non-linear wave equation. An effective energy tensor for the radiation is given, taking a scalar-field form in terms of the potential, entering the field equations in the same way as the matter energy tensor. It reduces to the Isaacson energy tensor in the linearized, high-frequency approximation. An energy conservation equation is derived for a quasi-local energy, essentially the Hawking energy. A transverse pressure exerted by interacting low-frequency gravitational radiation is predicted.Comment: 7 REVTeX4 page

    Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit

    Full text link
    It is shown that the optimum strategy of the eavesdropper, as described in the preceding paper, can be expressed in terms of a quantum circuit in a way which makes it obvious why certain parameters take on particular values, and why obtaining information in one basis gives rise to noise in the conjugate basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103

    Local structure of percolating gels at very low volume fractions

    Get PDF
    The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical simulations, and show that, in the absence of hydrodynamic interactions and for sufficiently strong interactions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the structure of the network of the arrested material we find that, when reducing the volume fraction, the gels are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential. Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the fractal dimension, with low interaction strength favouring more chain-like structures

    Two qubit copying machine for economical quantum eavesdropping

    Get PDF
    We study the mapping which occurs when a single qubit in an arbitrary state interacts with another qubit in a given, fixed state resulting in some unitary transformation on the two qubit system which, in effect, makes two copies of the first qubit. The general problem of the quality of the resulting copies is discussed using a special representation, a generalization of the usual Schmidt decomposition, of an arbitrary two-dimensional subspace of a tensor product of two 2-dimensional Hilbert spaces. We exhibit quantum circuits which can reproduce the results of any two qubit copying machine of this type. A simple stochastic generalization (using a ``classical'' random signal) of the copying machine is also considered. These copying machines provide simple embodiments of previously proposed optimal eavesdropping schemes for the BB84 and B92 quantum cryptography protocols.Comment: Minor changes. 26 pages RevTex including 7 PS figure

    Constraints on the distance to SGR 1806-20 from HI absorption

    Full text link
    The giant flare detected from the magnetar SGR 1806-20 on 2004 December 27 had a fluence more than 100 times higher than the only two other SGR flares ever recorded. Whereas the fluence is independent of distance, an estimate for the luminosity of the burst depends on the source's distance, which has previously been argued to be ~15 kpc. The burst produced a bright radio afterglow, against which Cameron et al. (2005) have measured an HI absorption spectrum. This has been used to propose a revised distance to SGR 1806-20 of between 6.4 and 9.8 kpc. Here we analyze this absorption spectrum, and compare it both to HI emission data from the Southern Galactic Plane Survey and to archival 12-CO survey data. We confirm ~6 kpc, as a likely lower limit on the distance to SGR 1806-20, but argue that it is difficult to place an upper limit on the distance to SGR 1806-20 from the HI data currently available. The previous value of ~15 kpc thus remains the best estimate of the distance to the source.Comment: 3 pages, 1 embedded EPS figure. Added sentences to end of Abstract and Conclusion, clarifying that most likely distance is 15 kpc. ApJ Letters, in pres

    Channel kets, entangled states, and the location of quantum information

    Full text link
    The well-known duality relating entangled states and noisy quantum channels is expressed in terms of a channel ket, a pure state on a suitable tripartite system, which functions as a pre-probability allowing the calculation of statistical correlations between, for example, the entrance and exit of a channel, once a framework has been chosen so as to allow a consistent set of probabilities. In each framework the standard notions of ordinary (classical) information theory apply, and it makes sense to ask whether information of a particular sort about one system is or is not present in another system. Quantum effects arise when a single pre-probability is used to compute statistical correlations in different incompatible frameworks, and various constraints on the presence and absence of different kinds of information are expressed in a set of all-or-nothing theorems which generalize or give a precise meaning to the concept of ``no-cloning.'' These theorems are used to discuss: the location of information in quantum channels modeled using a mixed-state environment; the CQCQ (classical-quantum) channels introduced by Holevo; and the location of information in the physical carriers of a quantum code. It is proposed that both channel and entanglement problems be classified in terms of pure states (functioning as pre-probabilities) on systems of p2p\geq 2 parts, with mixed bipartite entanglement and simple noisy channels belonging to the category p=3p=3, a five-qubit code to the category p=6p=6, etc.; then by the dimensions of the Hilbert spaces of the component parts, along with other criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor typographical errors correcte

    A rotating cylinder in an asymptotically locally anti-de Sitter background

    Full text link
    A family of exact solutions is presented which represents a rigidly rotating cylinder of dust in a background with a negative cosmological constant. The interior of the infinite cylinder is described by the Godel solution. An exact solution for the exterior solution is found which depends both on the rotation of the interior and on its radius. For values of these parameters less than a certain limit, the exterior solution is shown to be locally isomorphic to the Linet-Tian solution. For values larger than another limit, it is shown that the exterior solution extends into a region which contains closed timelike curves. At large distances from the source, the space-time is shown to be asymptotic locally to anti-de Sitter space.Comment: To appear in Classical and Quantum Gravit

    A new look at the Plebanski-Demianski family of solutions

    Full text link
    The Plebanski-Demianski metric, and those that can be obtained from it by taking coordinate transformations in certain limits, include the complete family of space-times of type D with an aligned electromagnetic field and a possibly non-zero cosmological constant. Starting with a new form of the line element which is better suited both for physical interpretation and for identifying different subfamilies, we review this entire family of solutions. Our metric for the expanding case explicitly includes two parameters which represent the acceleration of the sources and the twist of the repeated principal null congruences, the twist being directly related to both the angular velocity of the sources and their NUT-like properties. The non-expanding type D solutions are also identified. All special cases are derived in a simple and transparent way.Comment: 33 pages, 2 figures. To appear in Int. J. Mod. Phys.
    corecore