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Local structure of percolating gels at very low volume fractions
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The formation of colloidal gels is strongly dependent on the volume fraction of the system and the strength
of the interactions between the colloids. Here we explore very dilute solutions by the means of numerical
simulations, and show that, in the absence of hydrodynamic interactions and for sufficiently strong interac-
tions, percolating colloidal gels can be realised at very low values of the volume fraction. Characterising the
structure of the network of the arrested material we find that, when reducing the volume fraction, the gels
are dominated by low-energy local structures, analogous to the isolated clusters of the interaction potential.
Changing the strength of the interaction allows us to tune the compactness of the gel as characterised by the
fractal dimension, with low interaction strength favouring more chain-like structures.

I. INTRODUCTION

When subject to a moderate quenching, a large vari-
ety of systems can form macroscopic networks of arrested
materials, also called gels'™. Systems as different as
proteins®, clays®, foods”, hydrogels® and tissues”!? can
undergo gelation, with innumerable applications, as well
as more exotic kind of systems such as phase-separating
oxides'! and metallic glassformers!?2.

In order to predict the mechanical properties of gels, it
is important to know both their local'> 15 and global'6-18
structure, but a deep understanding of both remains
today a challenge. For example, in the very dilute
limit, the study of gel formation via molecular dynam-
ics is challenged by the very long times required to form
aggregates, with equilibration times that easily exceed
10® integration steps'®. In the model colloidal gels we
will consider, demixing of the particles into a (colloidal)
“gas” and “liquid” occurs. Spinodal demixing leads to
a network of particles?* 24 which undergoes dynamical
arrest?® 27, The final structure can persist for years?®, if
the self-generated or gravitational stress is weaker than
the yield stress”??. Demixing is driven by effective at-
tractions between the colloidal particles induced by the
addition of non-absorbing polymer. Thus, although the
original system is a mixture of three important compo-
nents — colloids, polymers and solvent — we can build
an effective one-component model of colloids which ex-
perience a pair, spherically symmetric attractive inter-
action whose strength corresponds to different polymer
concentrations3%-3!,

Nonetheless, the spinodal decomposition scenario is
not the only possible mechanism, and due to some dis-
crepancies in the literature?*3* alternative pathways to
gelation have been proposed® based on percolation.

In the present work we investigate the low-volume
fraction limit of gelation (neglecting hydrodynamic in-
teractions and their long-range, multi-body effects32:36)
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and its relation with percolation for a system of Brow-
nian particles with tuneable short-range attractions. In
particular, we demonstrate that the structural features
present at moderately low volume fraction ¢ ~ 10! sur-
vive at much lower volume fractions, ¢ ~ 1073, and allow
for the formation of thin percolating structures. When
the interaction strength is strong enough (i.e. when the
effective temperature is low enough), we show that ag-
gregation proceeds systematically and that a power law
behaviour relates the increase in the time to form a per-
colating gel and the inverse of the volume fraction. Thus
gelation from a state of clusters —which may be extended
in space— may be viewed as a time-dependent percolation
transition.

The article is organised as follows: in section II we
present the numerical model and the protocol followed
in our numerical simulations; in section III we illustrate
the observables used to characterise the structure of the
simulated gels; in section IV we report the main results
concerning the formation of nonequilibrium gels at low
volume fractions and their structural features, followed
by the analysis of non-percolating clusters at very low
densities; we conclude with a critical assessment of our
results.

Il. MODEL

We perform molecular dynamics simulations?” of a
model gel based on simple interaction potentials. We
consider a polydisperse additive mixture of particles of
different diameters. Particles 7 and j interact via a trun-
cated and shifted Morse pair potential u(r)

Bu(ri;) = Be explpo(oi;—rij)|(explpo(oi;—ri;)]|—2), (1)

where 8 = 1/kpT is the inverse temperature with Boltz-
mann constant kg, po = 33 is the range parameter and
oij = (0; +0j)/2. The interaction potential is truncated
at distance rcut = 1.404;. Particle sizes are drawn from a
Gaussian distribution of mean o and width A, with poly-
dispersity A/o = 4%. This effectively reproduces the
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FIG. 1. Simulation state points on a schematic phase dia-

gram for gels modelled by Morse interactions and Brownian
dynamics (notice the double logarithmic scales): black and
white symbols are from®?, and identify the previous estimates
for the percolation transition. Circles identify the boundaries
between fluid and percolating fluid, while black and white
lozenges correspond to cluster and gel phases, when the obser-
vation time is chosen to match the experimental conditions>?
The star corresponds to the approximate position of the crit-
ical point®®. With the present work, we explore the states
indicated by squares, crosses and triangles: we follow the
system till percolation occurs, and find gels down to much
smaller volume fractions (green squares) than previously ob-
served. Non percolating clusters (red crosses) are found when
the percolation time Tpere exceeds the accessible computer
simulation time: the percolation line (dashed line) is time-
dependent and when time increases, it moves to lower volume
fractions (gray-shaded dashed lines). In a limited range of in-
teraction strengths, we also observe the phase separation into
gas and crystalline “droplets” (blue triangles).

physics of colloid-polymer mixtures, leading eventually
to gelation due to the very short interaction range and
very strong attraction, whose amplitude is determined by
the interaction strength 3e32:38740,

We consider systems of N = 10000 and 100 000 parti-
cles performing over-damped Langevin dynamics. We ex-
plore a wide range of interaction strengths e and volume
volume fractions ¢ = 515 va mo3, where L is the linear
size of the cubic simulation box, with periodic boundary
conditions. In particular we focus on very small volume
fractions, down to ¢ = 0.001, and very strong interac-
tions, up to fe = 100. While these may exceed the
interaction strengths typically associated with colloid-
polymer mixtures, van der Waals interactions between
colloidal particles are of this order and greater®!

Every simulation run starts from an initial random
distribution of the particle centres. Velocities are then
randomly assigned from a Maxwell-Boltzmann distribu-
tion at inverse temperature [ and the particles undergo

an over-damped Langevin dynamics with Brownian time
75 = (0/2)?/6D where D is the self-diffusion constant for
a particle of diameter o and it is related to the friction co-
efficient v by Stokes’s law D = 1/8~. . We integrate the
equations of motion using the velocity-Verlet algorithm
with time-step dt = 0.001/mo/e and v = 10/me/o,
evolving the system for a maximum of 2 - 10° integra-
tion steps. Average values and standard errors are eval-
uated from 6 distinct trajectories for every state point.
Throughout we employ the LAMMPS molecular dynam-
ics package?®”

The state points that we consider are represented on
the schematic diagram in Fig. 1: most of the simula-
tions have been run in the percolating gel phase (green
squares), with volume fractions in the [0.01,0.07] inter-
val, as well as the formation of crystalline aggregates
(blue triangles); we also sample very low volume frac-
tions (red crosses) where a non-crystalline cluster phase
is observed. We focus in the following on the relevant
structural features that distinguish these different phases.
The gelation region (where the system has a sufficient
interaction strength fBe to undergo de-mixing, mean-
ing that Se > f.e at criticality) is determined through
the extended law of corresponding states where the re-
duced second viral coefficient By ~ —1.5 requires that
Be < —2.96%2.

Il. METRICS

In this work, structural measurements on gels and ag-
gregates are performed focusing on two-point correla-
tions (static structure factor) and higher order correla-
tions as detected by the Topological Cluster Classifica-
tion (TCC)*3.

Emerging characteristic length scales can be
identified* computing the structure factor S(q) di-
rectly in reciprocal space, defined as

N

S(q) =N""Y {expliq- (rx —11)]) (2)

k=1

where the average is performed on the ensemble of dis-
tinct initial conditions and evaluated isotropically at
q = |al-

The TCC, instead, provides a library of structures
composed of m particles that are ground states (energy
minima) for the chosen interaction potential in the case
of mono-disperse mixtures*°:46.

Using the Voronoi network of direct neighbours and
selecting particles within the cutoff distance r.,; we are
able to reconstruct the entire neighbourhood of every sin-
gle particle and identify whether it is compatible with
one or more of the candidate structures of the TCC. In
particular, we focus on structures of m = 5,8,9, 10 parti-
cles relevant to the Morse interaction and we additionally
check for local crystalline order, such as face centred cu-
bic (fcc) and hexagonal close packed (hep) order. It is
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FIG. 2. Aggregates (coloured) and percolating clusters (white particles) for different volume fractions and interaction strengths:
(a) ¢ = 0.015 and Be = 10, (b)¢ = 0.05 and Be = 6, (c) ¢ = 0.05 and Be = 100. The network is formed by thick, extended
chains for moderate interaction strengths, as in (a) and (b), and it is more space-filling for very large interaction strengths (c).
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FIG. 3. The local energy minima for m identical particles
interacting with the Morse potential considered by the TCC
algorithm in order to detect local order. Every structure is
composed of rings of particles (highlighted in different col-
ors). Structures with m = 8,9, 10 are based on five-membered
rings. The m = 5 structure corresponds to tetrahedral order.

important to notice that some of these local minima have
an immediate geometric meaning: the m = 5 triangular
bipyramid corresponds to tetrahedral order, the m = 10
defective icosahedron to five-fold symmetric order. As a
result of the TCC analysis, we obtain the concentration
of structures n,, = N,,/N for every candidate structure,
where N, corresponds to the number of particles belong-
ing to a collection of structures of type m. Since a given
particle can be in principle associated to multiple kinds
of local order, we choose to establish a hierarchy based on
the size of the candidate structure and label the particles
consequently: the priority of label assignment follows the
order of the list {fcc, hep, 10,9,8,5}.

The formation of gels entrains the assembly of ex-
tended aggregates of particles that percolate through
the simulation box, see Figure 2. We call these aggre-
gates clusters and we detect them with an agglomerative
algorithm47: particles at a distance lesser than r.,; are
connected and belong to the same cluster; the system is
partitioned into distinct clusters whose maximal exten-
sion £y, £y, £ in the z,y or z dimension can be compared
with the size of the box. Whenever ¢; > L — 20 we iden-

tify the cluster as a percolating cluster, and the system is
considered to be a gel.

An additional direct estimate of the size of the aggre-
gates is provided by the radius of gyration Ry, defined,
for an aggregate of P particles, as

Ln . .
Rg:<ﬁZ(ri_Tcm)>7 (3)

i=1

where 7, is the position of the centre of mass of the
aggregate and (-) indicates the average over the ensemble
of aggregates. The growth of the radius of gyration in
time allows to describe the aggregation process.

Finally, we also quantify conformational changes by
the means of the fractal dimension of the gel con-
figurations. In particular we estimate the Hausdorff
dimension*® (naturally smaller than the Euclidean di-
mension) following the box counting algorithm*®, which
subdivides the system in cells of variable linear size s
and evaluates the number of cells N, filled by the gel’s
branched structure as a function of s. The box-counting
fractal dimension is defined as

dy = lim 25 Ne(2)

s—0 logl/s ’ )

and it provides (in the limit of large systems) an estimate
of the fractal dimension dy of the gel’s structure.

IV. RESULTS

We divide our analysis into four parts: we first de-
scribe the dynamics of gel formation and its consequences
on the large wavelength structural features (Sec. IV A);
from this we estimate the time necessary to form per-
colating networks for lower and lower volume fractions
and observe no sign of an intrinsic limit volume fraction
for sufficiently large interaction strengths (Sec. IV B); we
then focus on the structural features of the percolating



networks at low (= 0.01, Sec. IVC) and extremely low
(= 0.001, Sec. IV D) volume fractions, making use of the
higher order correlation functions provided by the Topo-
logical Cluster Classification.

A. Time evolution

Starting from a uniformly distributed initial random
configuration, particles diffuse and eventually interact
when approaching each other at distances below 7cyus.
Due to the deep attractive wells of the chosen potential,
the system rapidly enters a regime of very slow relax-
ation, where the particles gradually form clusters whose
extension depends on the thermodynamic conditions and
on the observation time. The slow relaxation process
involves a continuous drift of the potential energy per
particle towards lower and lower values, due to the con-
tinuous (and progressively slower) reorganisation of the
particles within the clusters and the growth of more ex-
tended clusters. At a time 7Tperc — characteristic of the
chosen volume fraction ¢ and interaction strength e —
a large percolating cluster is formed, and we regard the
system as a nonequilibrium percolating gel'.

The process of formation of a percolating gel is accom-
panied by a complex structural organisation of the local
neighborhood of the particles and, at a longer range, of
the connectivity properties of the cluster. At the level
of the two-point correlation functions, this is illustrated
in Figure 4, where we show the time evolution of the
structure factor S(g) for a system at moderately low vol-
ume fraction and interaction strength. This displays a
series of remarkable features: (i) the striking increase of
the low-q peak illustrates the rapid formation of large,
system-spanning structures when approaching the per-
colating regime; (ii) the shape of the peaks at go ~ 4w
indicates the formation of local order at times as early
as 0.008 percolation times; (iii) finally, the increase in
amplitude of the secondary peaks and the emergence
of longer-length scale oscillations suggest that the pres-
ence of medium-range correlations in the final percolated
structures.

B. Limits of gelation

It has been suggested in a previous study®? (where the
observation time was fixed in order to match the exper-
imental conditions) that percolating gels in simulations
without hydrodynamics become hard to access for vol-
ume fractions below ¢* ~ 0.07. Performing more exten-
sive numerical simulations, we quantify this effect esti-
mating the time needed in order to form a percolating
cluster as a function of both the volume fraction and the
interaction strength. As illustrated in Fig. 5, the perco-
lation time Tperc increases by several orders of magnitude
when the volume fraction is reduced. Larger interaction
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FIG. 4. Double logarithmic plot of the time evolution of the
structural changes as detected by the structure factor S(q)
(Eq.2) for a system at volume fraction ¢ = 0.05 and inter-
action strength fSe = 10. At early times the system is in a
disordered gaseous state; when approaching the percolation
time Tpere and gelation, the magnitude of the low-q peak in-
creases dramatically. Inset: local structure emerges in the
shoulder of the peak at go =~ 4.

strengths tend to reduce the time needed to percolate,
and this effect is amplified at smaller volume fractions.
In particular, for moderate interaction strengths, we
collect data down to low volume fractions ¢ ~ 0.01. In
the accessible dynamical range, the relation between per-
colation times and volume fraction appears to be gov-
erned by a power low Tpere X ¢~ %, with a(fe) € [3.3,4.7],
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FIG. 5. Elapsed time Tper. before the detection of a perco-
lating cluster as a function of the inverse volume fraction and
the interaction strength in a double logarithmic plot. Dotted
lines are power-law fits.
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FIG. 6. Structure factor S(q) for (a) fixed volume fraction
¢ = 0.05 and several values of the interaction strength and
(b) fixed interaction strength S = 10 and varying volume
fraction.

suggesting that no characteristic or limit volume fraction
can be detected. This also implies that any limit to the
detection of a percolating cluster is mainly set by the ob-
servation time: if this is long enough, one can expect to
observe a gel state even in the limit of extremely diluted
suspensions. Similarly to inferences from experiments in
microgravity®?, we rationalise our results observing that
gelation is fundamentally limited only by the magnitude
of thermal fluctuations, capable of dissolving the perco-
lating clusters.

C. Structural properties at low volume fractions

Once a percolating cluster has formed, we analyse the
structural properties of the system in order to identify
the nature of the different gels obtained at different ther-
modynamic conditions. First we focus on the structural
changes as detected by the structure factor.

In Fig. 6(a) we illustrate the effect of changing the in-
teraction strength on a system that is moderately dense,
¢ = 0.05: the characteristic wavelengths are unchanged
by the changing interaction strength; however, one ob-
serves that for (fe > 6) the peak at og ~ 47 presents
a shoulder, indicative of the increase of local order. At
the same time, the peak at 0g ~ 27 decreases in height,
accompanied by the increase in amplitude corresponding
to longer-range wavelengths.

In Fig. 6(b) a similar scenario is obtained when low-
ering volume fractions at a fixed value of the interaction
strength S = 10. However, the increase of local order as
detected at wavelengths close to 47 is accompanied by a
further increase in the amplitude of the peak at 27 and
an overall depletion of the long wavelength modes. These

£

FIG. 7. Concentration n = Ny, /N of particles identified in
local structures of m particles at ¢ = 0.03. A disordered
fluid phase at low Be < 3.5 is followed by a phase where
crystalline order prevails (3.5 < Sz < 6), and finally a per-
colating phase dominated by clusters of size m = 10, formed
by five-membered rings. Error-bars are within the size of the
symbols.

results indicate that the change of structure hinted by the
shoulder oq =~ 47 takes a different form if one decreases
the volume fraction or increases the interaction strength.

In order to quantify the nature of the different be-
haviour, we compute higher order correlations. More
detailed knowledge on the kind of local order appearing
in the formation of the percolating gels can be obtained
from the Topological Cluster Classification analysis of
the particle coordinates (see IIT). This method identifies,
within the network of neighbours, domains composed by
arrangements of particles compatible with the local min-
ima of m particles interacting via the Morse potential.
The results of this analysis are shown in Figures 7 and
8 for constant volume fraction and constant interaction
strength conditions respectively*3.

Among the several structures identified by the TCC,
some specific arrangements have a prominent role, de-
pending on the interaction strength and the volume frac-
tion. At fixed volume fraction ¢ = 0.03 (Fig. 7), we
observe that starting from very high interaction strength
Be the particles (kinetically arrested in their initially ran-
dom relative positions) tend to form structures compati-
ble with m = 8,9 and 10 which all are five-fold symmetric
polyhedra. The m = 10 defective icosahedra in particu-
lar, become more and more represented as the interaction
strength is reduced while lower order structures (5 to 9
particles) are less present, indicating that aggregation is
more accessible and larger low energy structures can be
formed. This is even more evident when the interaction
strength is decreased below e = 8 where local order is
enhanced in the form of local crystalline structures such
as face centered cubic or hexagonal close packed struc-
tures,consistent with previous work in the present®' and
related®? systems. We notice that the crystalline clusters
form separately and at such low densities they consist
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FIG. 8. Concentration n, = N,,/N of particles identified
in structures of m particles at fe = 4 (a) and e = 10 (b).
In (a) crystalline clusters, dominated by fcc local order, are
formed for ¢ < 0.025. In (b) percolating gels (¢ > 0.005), and
non-percolating aggregated clusters (¢ < 0.005) are formed.
Only relevant structures are shown. Errorbars are within the
symbol sizes.

in isolated clusters that do not percolate through the
system. For fe < 3 the attractions are so weak that
the thermal fluctuations are sufficient to stabilise a fluid
phase, and make gelation impossible.

We then analyse two exemplary cases at fixed inter-
action strengths and variable volume fraction: fe = 4
(compatible with local crystalline order) and fe = 10
(where crystals are rare), see Fig. 8. For fe = 4 we
find that the density fluctuations are sufficient to trig-
ger the nucleation of local crystalline clusters. When the
volume fraction is above ¢ = 0.025, there is a variety
of local arrangements in hcp, fce or five-fold symmet-
ric order (m = 10), but below ¢ = 0.025 the fcc local
order dominates and the system is mainly formed by iso-
lated crystalline clusters immersed in a gaseous phase
(see Fig. 11(a)), like “droplets of crystals”. For values of
4 < Be < 10 we observe an intermediate regime where
crystalline and noncrystalline structures contribute to
the formation of a percolating network.

For a larger interaction strength (8e = 10), we vary
the volume fraction and track the structural changes
in the formed gels, Fig. 8(b). The kind of structures
formed ranges from percolating gels to a cluster phase,
as depicted in Fig. 11(b-c). In this case, we see that
the fraction of particles participating to low energy
structures such as the m = 10 defective icosahedra
(indicative of five fold symmetry) increase systemati-
cally, at the expense of smaller clusters as the volume

10
Be

FIG. 9. (a) Box-counting fractal dimension as a function of
the interaction strength Se at volume fraction ¢ = 0.05. The
shaded area indicates the region for which percolation is not
observed. The black dots are the estimate at large scales,
while the white dots are the estimate at short scales. The
box counting method (filled box N. vs linear size of the boxes
s) is shown in inset (b) at Se = 100: for box sides s < 50
we probe the local structure, obtaining a first exponent (blue
dot-dashed line) while at larger scales we obtain a second
exponent (red dashed curve).
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FIG. 10. Evolution of the average radius of gyration of the
aggregates for different volume fractions at Se = 10. For ¢ =
0.05, we remove the percolating cluster from the statistics.
The continuous line indicates the slope of t'/%/ where d; is
estimated for ¢ = 0.05, while the dashed line corresponds to
dy = 2.5, associated to diffusion-dominated cluster accretion.
Time is rescaled by tRy=d0, the time at which the average
radius of gyration is equal to 4o.

fraction ¢ is reduced. This suggests that when the gel
is made only by narrow filaments due to the paucity
of the particles available, these are mainly arranged
into low energy structures, which form the backbone of
the percolating network, see Fig. 12. The deep energy
minima represented by the m = 10 defective icosahedra
are then responsible of the mechanical stiffness of the
gel and its resistance to thermal fluctuations. It is



FIG. 11. Final configurations at different volume fractions and interaction strengths: (a) a crystalline cluster phase at e = 4
and ¢ = 0.0154 with “crystal droplets”; (b) a gel at Se = 10 and ¢ = 0.03; (c) a cluster phase at e = 10 and ¢ = 0.001.
Phases (b) and (c) are dominated by the m = 10 defective icosahedra local order (green) while (a) shows local fcc crystalline

order (azure) coexisting with a gaseous phase.

FIG. 12. The particles in the local structure corresponding
to the m = 10 Morse energy minimum (green) form the back-
bone of the percolating gel filaments at very low volume frac-
tions (here ¢ = 0.01) at Se = 10.

important to notice that it is precisely this kind of
structures that are underrepresented in experimental
conditions®238%3 due to the effects of hydrodynamic
interactions, excluded from the present study.

All the previous measurements are local to some de-
gree. In order to quantify how the percolation network
changes globally as we change the interaction strength
we measure a global property of the network, as its frac-
tal dimension. We perform a measure of structural order
through the estimation of the average fractal dimension
dy of the percolating clusters via box counting (as de-
scribed in section IIT). With this method (see inset of
Flg. 9) it is possible to probe two regimes: the fractal
dimension of structures at small scales (below 50) and at
larger scales (larger than 50). In this way we can account
for the different degree of local compactness and the pres-
ence of holes in the branched network [see Fig. 2(b) and

(©)

For a moderately dilute system at ¢ = 0.05 we observe
in Fig. 9(a) that at large scales (black dots) the change
in the interaction strength leads from space-filling per-
colating networks for high e (dy ~ 2.4) to more chain-
like structures at lower (e, as hinted by the decrease
of dy towards dy ~ 2 when approaching the gel-fluid
boundary at fe = 3.5. The information at short scales
(white circles) shows that the chains are less compact
as we increase the interaction strength, with more holes
that reduce the local fractal dimension from dy ~ 1.8
to df ~ 1.5. These results are consistent with the fact
that diffusion-controlled cluster accretion®!(where single
diffusing particles coalesce on a seed) is compatible with
fractal dimension dy ~ 2.5 in three dimensions while clus-
ter formation by diffusion-limited aggregation® (where
clusters of comparable size aggregate) is compatible with
dy ~ 1.75. At very high interaction strengths (very low
temperatures, slow diffusion) the particles mainly aggre-
gate on slowly moving seeds, while coalescence of equal
size, thick chain-like clusters prevails at smaller Se.

D. Low volume fractions

We now consider even lower volume fractions and dis-
cuss the structural properties of the aggregates that we
obtain in the light of the percolating gels illustrated in
the previous section.

When decreasing the densities to extremely low values
(¢ = 0.003,0.001), the time needed to form a percolat-
ing clusters exceeds the available computation time (the
longest calculations lasted 2688 CPU hours). The evo-
lution of the system proceeds through a slow ggregation
that nevertheless permits the formation of local, low en-
ergy aggregates. In Figure 8 we demonstrate two distinct
behaviours, as a function of the interaction strength: for
moderate interaction strengths Se = 4, Figure 8(a), we



observe that the local crystalline order prevails down to
very low packing fractions. In particular, for ¢ < 0.025,
a large fraction of particles resides in an fcc-like ordered
cluster, coexisting with a very dilute gas of isolated par-
ticles. For volume fractions even smaller (¢ < 0.01) the
time necessary for aggregation is even slower and it ex-
ceeds the accessible computation time.

Conversely, when the interaction strength is strong
enough, the crystalline order is largely suppressed. As
demonstrated in Figure 8(b), the structural signature of
these disconnected clusters is consistent with the features
of higher density percolating gels, indicating that at the
local level it is hard to distinguish percolating from non-
percolating systems. In particular, we notice that the
m = 10 geometry still dominates the statistics, show-
ing that the aggregation stems from the formation of low
energy clusters of five-fold-membered rings.

At such low volume fractions, forming a percolating
network becomes challenging: nonetheless we can com-
pare the typical structure of the aggregates tracking the
time evolution of the radius of gyration R, as a function
of time (Fig. 10). Diffusion-limited cluster aggregation
predicts that Ry ~ /45 where dy is the fractal dimen-
sion of the cluster®%>7. For volume fractions ranging from
0.001 to 0.05 at a fixed interaction strength Se = 10 we
observe that while at very early times d; ~ 2.5, at later
times the growth of the radius of gyration is compatible
with d; ~ 1.7, compatible with diffusion-limited cluster
aggregation. The data collapse suggests that the growth
mechanism is the same for the same interaction strength,
and that the low volume fractions have the main con-
sequence of dramatically slowing down the aggregation
process.

We remark that the ensemble of 6 distinct uniformly
distributed random initial conditions does not appear to
affect the results significantly, and that even for very low
volume fractions and high interaction strengths we re-
produce very similar structural signatures as detected by
the Topological Cluster Classification.

V. CONCLUSIONS

By the means of numerical simulations, we have ex-
plored the formation of model nonequilibrium colloidal
gels in the limit of very low volume fractions and
high interaction strengths in a solution modelled by
over-damped Langevin dynamics. The considered state
points, Fig. 1, allowed us to demonstrate that, under
the idealised conditions of our numerical simulation, per-
colating gels can be found down to very low densities,
provided that the observation time is sufficiently long.
In fact, we have shown that the time necessary in order
to observe a percolating cluster increases rapidly with
the inverse volume fraction, suggesting that density alone
cannot be a limit to gel formation.

We have also explored extremely low volume fraction
gels, where percolation occurs on longer time scales than

we can access. Comparing the structural features of these
extremely low density aggregates and the higher density
percolating networks we observe very similar patterns,
suggesting that the mechanisms at play at the local level
are the same: rigidity emerges from the condensation of
the colloids into locally favoured structures®®. In partic-
ular, we observe that five-fold symmetric order (repre-
sented by the m = 10 defective icosahedra) plays a very
important role in forming the backbone of the chain-like
network realised at very low densities.

On the basis of this analysis, we extended previous
phase diagrams3?, identifying a new region where Brow-
nian dynamics simulations can realise percolating gels if
the observation time is longer than the percolation time
(Fig. 1): the obtained gels are however strikingly different
from the structural point of view with respect to those
found in experiments®23%53  with more compact aggre-
gates and prevalence of five-fold symmetric order. This
emphasises the importance of (here absent) long range,
hydrodynamic interactions in order to form less compact
structures®236,

The overall physical scenario suggests that gelation oc-
curs when two necessary but not individually sufficient
conditions are satisfied (see Fig. 1): on one hand, the
interaction strength needs to be large enough to drive
phase separation to a liquid and gas; on the other hand,
the observation time needs to be sufficiently long to al-
low for percolation to occur. In fact, even when demixing
occurs at low volume fractions for too weak interaction
strengths, the resulting liquid droplets — which may then
crystallise — appear too compact to percolate if fe < 8.
In the case of very low volume fractions, very thin fila-
ments are expected to be formed, which appear as iso-
lated clusters for observation times shorter than the per-
colation time. However, the local structure of such fil-
aments would be hardly distinguishable from the local
structure of the percolating network.

Building on the present results for the purely Brownian
case, it will be possible to understand how the hydrody-
namic forces affect the dynamics (in terms of the time re-
quired to form a percolating cluster), the local order and
the connectivity properties of the network in the limit of
very low densities once the hydrodynamic effects will be
added (in the form of, for example, multi-particle colli-
sion dynamics®®). This will contribute to a microscopic
explanation of the emergent rigidity in colloidal gels.
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