27 research outputs found

    Native liquid extraction surface analysis mass spectrometry : analysis of noncovalent protein complexes directly from dried substrates

    Get PDF
    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αÎČ)(2)(4H)] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The ‘contact’ LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS. [Figure: see text

    Comprehensive LESA Mass Spectrometry Imaging of Intact Proteins by Integration of Cylindrical FAIMS

    Get PDF
    The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge

    Direct liquid extraction surface analysis mass spectrometry of cell wall lipids from mycobacteria: Salt additives for decreased spectral complexity

    Get PDF
    RationaleLipids are important mycobacterium cell wall constituents; changes are linked with drug resistance. Liquid extraction surface analysis (LESA) enables direct sampling in a highly sensitive manner. Here we describe protocols for the analysis of lipids from bacterial colonies. Lipids form various adducts, complicating spectra. Salt additives were investigated to circumvent this problem.MethodsChloroform:methanol mixtures were studied for lipid extraction and analysis by LESA‐MS. The inclusion of (ESI‐compatible) acetate salts of sodium, potassium or lithium in the extraction solvent was investigated.ResultsWe report the detection of bacterial cell wall lipids from mycobacterial species using LESA for the first time. Sampling protocols were optimised for the use of volatile extraction solvents. The inclusion of acetate salt additives in the sampling solvent significantly reduces spectral complexity in comparison with no additives being used.ConclusionsLESA offers a sensitive technique for bacterial lipid phenotyping. The inclusion of an acetate salt in the sampling solvent drives adduct formation towards a specific adduct type and thus significantly reduces spectral complexity

    Liquid Extraction Surface Analysis (LESA) Electron-Induced Dissociation and Collision-Induced Dissociation Mass Spectrometry of Small Molecule Drug Compounds.

    Get PDF
    Here, we present liquid extraction surface analysis (LESA) coupled with electron-induced dissociation (EID) mass spectrometry in a Fourier-transform ion cyclotron resonance mass spectrometer for the analysis of small organic pharmaceutical compounds directly from dosed tissue. First, the direct infusion electrospray ionisation EID and collision-induced dissociation (CID) behaviour of erlotinib, moxifloxacin, clozapine and olanzapine standards were compared. EID mass spectra were also compared with experimental or reference electron impact ionisation mass spectra. The results show that (with the exception of erlotinib) EID and CID result in complementary fragment ions. Subsequently, we performed LESA EID MS/MS and LESA CID MS/MS on singly charged ions of moxifloxacin and erlotinib extracted from a thin tissue section of rat kidney from a cassette-dosed animal. Both techniques provided structural information, with the majority of peaks observed for the drug standards also observed for the tissue-extracted species. Overall, these results demonstrate the feasibility of LESA EID MS/MS of drug compounds from dosed tissue and extend the number of molecular structures for which EID behaviour has been determined. Graphical Abstract ᅟ

    Surface-sampling mass spectrometry to study proteins and protein complexes

    Get PDF
    This review aims to summarise the current capabilities of surface mass spectrometry (MS) approaches that offer intact protein analysis, and that of non-covalent complexes. Protein analysis is largely achieved via matrix-assisted laser desorption/ionisation (MALDI), which is in itself a surface analysis approach or solvent-based electrospray ionisation (ESI). Several surface sampling approaches have been developed based on ESI, and those that have been used for intact protein analysis will be discussed below. The extent of protein coverage, top-down elucidation, and probing of protein structure for native proteins and non-covalent complexes will be discussed for each approach. Strategies for improving protein analysis, ranging from sample preparation, and sampling methods to instrument modifications and the inclusion of ion mobility separation in the workflow will also be discussed. The relative benefits and drawbacks of each approach will be summarised, providing an overview of current capabilities

    Probing Interkingdom Signaling Molecules via Liquid Extraction Surface Analysis–Mass Spectrometry

    Get PDF
    Previously, metabolites diffused or secreted from microbial samples have been analyzed via liquid chromatography–mass spectrometry (LC–MS) approaches following lengthy extraction protocols. Here, we present a model system for growing biofilms on discs before utilizing rapid and direct surface sampling MS, namely, liquid extraction surface analysis, to study the microbial exometabolome. One of the benefits of this approach is its surface-specific nature, enabling mimicking biofilm formation in a way that the study of planktonic liquid cultures cannot imitate. Even though Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) have been studied previously in isolation, very few studies consider the complexity of the interplay between these pathogens, which are commonly combined causative agents of infection. Our model system provides a route to investigate changes in the exometabolome, such as metabolites that become circulatory in the presence of multiple pathogens. Our results agree with previous reports showing that 2-alkyl-4(1H)-quinolone signal molecules produced by P. aeruginosa are important markers of infection and suggest that methods for monitoring levels of 2-heptyl-4-hydroxyquinoline and 2,4-dihydroxyquinoline, as well as pyocyanin, could be beneficial in the determination of causative agents in interkingdom infection including P. aeruginosa. Furthermore, studying changes in exometabolome metabolites between pqs quorum sensing antagonists in treated and nontreated samples suggests suppression of phenazine production by P. aeruginosa. Hence, our model provides a rapid analytical approach to gaining a mechanistic understanding of bacterial signaling

    Untargeted Metabolomic Characterization of Glioblastoma Intra-Tumor Heterogeneity Using OrbiSIMS

    Get PDF
    Glioblastoma (GBM) is an incurable brain cancer with a median survival of less than two years from diagnosis. The standard treatment of GBM is multimodality therapy comprising surgical resection, radiation, and chemotherapy. However, prognosis remains poor, and there is an urgent need for effective anticancer drugs. Since different regions of a single GBM contain multiple cancer subpopulations ("intra-tumor heterogeneity"), this likely accounts for therapy failure as certain cancer cells can escape from immune surveillance and therapeutic threats. Here, we present metabolomic data generated using the Orbitrap secondary ion mass spectrometry (OrbiSIMS) technique to investigate brain tumor metabolism within its highly heterogeneous tumor microenvironment. Our results demonstrate that an OrbiSIMS-based untargeted metabolomics method was able to discriminate morphologically distinct regions (viable, necrotic, and non-cancerous) within single tumors from formalin-fixed paraffin-embedded tissue archives. Specifically, cancer cells from necrotic regions were separated from viable GBM cells based on a set of metabolites including cytosine, phosphate, purine, xanthine, and 8-hydroxy-7-methylguanine. Moreover, we mapped ubiquitous metabolites across necrotic and viable regions into metabolic pathways, which allowed for the discovery of tryptophan metabolism that was likely essential for GBM cellular survival. In summary, this study first demonstrated the capability of OrbiSIMS for in situ investigation of GBM intra-tumor heterogeneity, and the acquired information can potentially help improve our understanding of cancer metabolism and develop new therapies that can effectively target multiple subpopulations within a tumor
    corecore