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RESEARCH ARTICLE

Native Liquid Extraction Surface Analysis Mass
Spectrometry: Analysis of Noncovalent Protein Complexes

Directly from Dried Substrates

Nicholas J. Martin,” Rian L. Griffiths,! Rebecca L. Edwards,'? Helen J. Cooper’

!School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
2Present Address: Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

Abstract. Liquid extraction surface analysis (LESA) mass spectrometry is a promis-
ing tool for the analysis of intact proteins from biological substrates. Here, we
demonstrate native LESA mass spectrometry of noncovalent protein complexes of

myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which
apomyoglobin is noncovalently bound to the prosthetic heme group, was observed

Haemoglobin
tetramer

following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene

| l fluoride surfaces. Tetrameric hemoglobin [(aB),*"] was observed following LESA

|| ’\

mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride
(PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound

dimers and monomers were also observed. The ‘contact’ LESA approach was
particularly suitable for the analysis of hemoglobin tetramers from DBS.
Keywords: Native mass spectrometry, Proteins, Liquid extraction surface analysis, LESA, Liquid microjunction

sampling, Direct surface sampling, Dried blood spots
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Introduction

S oon after its introduction, it was demonstrated that
electrospray ionization (ESI) [1] was capable of retaining
specific noncovalent interactions [2]. Katta and Chait demon-
strated ESI of holo-myoglobin (in which the apo-myoglobin is
noncovalently bound to the prosthetic heme group) [3]. Light-
Wabhl et al. showed that it was possible to preserve noncovalent
quaternary associations by ESI, detecting the intact tetramer of
hemoglobin [4]. The literature now abounds with examples of
ESI mass spectrometry of protein—metal, protein—ligand, pro-
tein~DNA, and protein—protein complexes, and this field of
research has been dubbed native mass spectrometry [5]. Native
mass spectrometry is able to define the stoichiometry of protein
subunits in a multi-protein complex and requires a fraction of
the sample or analysis time required for NMR or X-ray crys-
tallography [6].

The conditions needed to retain a protein in its native (like)
state are different from those used typically in ESI mass spec-
trometry. Buffers cannot contain organic solvent or have low
pH. Such buffers unfold and protonate the protein, which does
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improve ionization efficiency but disrupts any noncovalent
interactions [7]. In native mass spectrometry, proteins are
electrosprayed from aqueous solutions containing volatile
buffers such as ammonium acetate or tricthylammonium bicar-
bonate at near neutral pH [8]. Consequently, only basic amino
acid residues such as lysine will undergo reversible proton
exchange with the solvent. Proton exchange takes place on
residues at the surface of the protein and amino acid residues
folded within the protein structure are shielded from proton-
ation [9]. As a result, the charge states of the protein ions are
generally lower than that of a typical denaturing ESI experi-
ment [10], and time of flight mass spectrometers have become
the instruments of choice because of their high upper mass-to-
charge limit [11].

Other ionization techniques have been applied to the anal-
ysis of noncovalent protein complexes, including matrix-
assisted laser desorption/ionization (MALDI) [12], and vari-
ants of ESI such as electrosonic spray ionization [13] and, more
recently, paperspray ionization [14]. Here, we use liquid ex-
traction surface analysis (LESA) mass spectrometry to probe
noncovalent protein complexes directly from dried surfaces.
LESA is a surface sampling technique that is often thought of
as an ambient ionization technique alongside techniques such
as desorption electrospray ionization (DESI). In fact, it is an
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ambient extraction process coupled with conventional ESI.
LESA is a commercial variant of the liquid microjunction
surface sampling probe (LMJ SSP) developed by Van Berkel
[15] made available on the Triversa Nanomate
nanoelectrospray platform [16]. The LESA extraction process
is very simple: a droplet of solvent is applied to the surface of a
substrate by a robotically controlled pipette tip. The droplet is
held for a few seconds, forming a liquid microjunction between
the pipette tip and the surface and allowing the passive diffu-
sion of analyte molecules from the surface and into the solvent.
The sample is then re-aspirated and infused into the mass
spectrometer via ESI. The approach is suitable for a range of
different analytes, including small molecules, lipids, proteolyt-
ic peptides, and intact proteins [17-20]. Intact proteins have
been detected by LESA mass spectrometry from substrates,
including dried blood spots (DBS) [16, 21], thin tissue sections
[20, 22], and bacterial colonies growing on agar [23].
Nevertheless, prior to this work, LESA mass spectrometry of
noncovalent protein complexes directly from dried substrates
has not been demonstrated. The potential benefits of native
LESA mass spectrometry over standard native ESI mass spec-
trometry are the ability to probe noncovalent protein interac-
tions from biological substrates without the need for sample
clean-up and, perhaps more importantly, to get direct insight
into biological processes within that substrate. In principle,
native LESA mass spectrometry could provide the ability to
analyze protein complexes or drug—protein interactions directly
from tissue or DBS. A potential drawback of native LESA
mass spectrometry also arises from the lack of sample clean-
up. In some cases, the complexity of the biological substrate
may prevent ionization of intact protein complexes.
(Nevertheless, it should be noted that an important feature of
LESA is that the extraction and ionization events are
decoupled, unlike other ambient techniques, providing oppor-
tunity to incorporate sample clean-up steps if necessary).

The challenge for native LESA mass spectrometry is that
drying is known to denature proteins and disrupt noncovalent
interactions [24]; however, for protein complexes to be ob-
served by LESA MS, the noncovalent interactions must either
survive the drying process or reform in the sampling process.
Reports of noncovalent complex analysis by MALDI indicate
that noncovalent interactions can survive crystallization within
a MALDI matrix [12], so may survive drying on a surface. In
this work, we demonstrate that LESA mass spectrometry can
be successfully applied to the analysis of noncovalent protein
complexes (holomyoglobin, hemoglobin dimers, and tetra-
mers) directly from dried surfaces, including glass,
polyvinylidene fluoride (PVDF), and DBS on filter paper.
For DBS, potential challenges include drying and coagulation:
blood clotting leads to the activation of platelets resulting in red
blood cell membrane rupture and hemolysis, whilst drying red
blood cells can lead to further lysis and auto oxidation of
hemoglobin [25, 26]. Furthermore, blood has a high sodium
content (between 135 and 145 mM) [27]. Despite these chal-
lenges, our results show that noncovalent hemoglobin tetra-
mers can be sampled directly from DBS. The native LESA
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mass spectrometry approach may, therefore, be useful as a tool
for the screening and diagnosis of hemoglobin synthesis disor-
ders, in addition to the analysis of other noncovalent protein
interactions.

Materials and Methods
Standard Proteins

Lyophilized horse cardiac muscle myoglobin and human he-
moglobin were purchased from Sigma Aldrich (Gillingham,
UK) and used without further purification. One hundred pM
solutions of each were prepared in HPLC grade water, (J. T.
Baker, Deventer, The Netherlands). Five uL aliquots were
spotted onto Immobilon P PVDF membranes (Millipore,
Watford, UK) and plain glass microscope slides (Thermo
Scientific, Loughborough, UK) at marked positions. Glass
microscope slides were first prepared by rinsing with HPLC
grade water and air drying. Following deposition of protein
solutions, samples were left to air dry for 4 h prior to analysis.

Dried Blood Spots

The work was approved by the University of Birmingham
STEM Ethical Review Committee (ERN_12-0782A and
ERN_14-0454). Dried blood spots (DBS) were acquired from
healthy human adult donors via finger prick onto NHS blood
spot (Guthrie) cards, Ahlstrom grade 226 filter paper ID
Biological Systems, (Greenville, SC, USA) and dried over-
night prior to analysis.

Surface Sampling

LESA Sampling LESA was carried out by use of a
Triversa Nanomate nanoelectrospray platform (Advion
Biosciences, Ithaca, NY, USA). The dried sample sub-
strates were mounted onto the LESA universal adaptor
plate and an image was acquired using an Epson
Perfection V300 photo scanner. The LESA Points soft-
ware (Advion) was used to select the precise location of
the substrate to be sampled. The universal adapter plate
was placed in the Triversa Nanomate. Ten mM ammoni-
um acetate (Fisher Scientific, Loughborough, UK), bal-
anced to pH 6.8 with acetic acid (Sigma Aldrich,
Gillingham, UK), was used as an extraction and ioniza-
tion solvent for the standard proteins. The extraction/
ionization solvent for the DBS was 95:5 ammonium
acetate (10 mM, pH 6.8):methanol (HPLC grade, J. T.
Baker, Deventer, The Netherlands). In the extraction
process, 7 puL of solvent was aspirated from the solvent
well. The robotic arm relocated to a position above the
sample and descended to a height of either 1.6 mm
(Orbitrap analyses) or 0.6 mm (Q-TOF analyses) above
the surface. Four uL of solvent was dispensed onto the
surface. After a delay of 3 s, 4.5 uL of sample was re-
aspirated into the pipette tip. The dispense/re-aspirate
process was repeated once before samples were infused



1322

into the mass spectrometer via chip-based electrospray
ionization. Samples were infused with a gas pressure of
1.0 psi and an ionization voltage of 1.7 kV. In some
cases, LESA sampling of DBS was characterized by
collapse of the liquid microjunction. In that event, DBS
were left to dry for approximately 5 min and the same
areas were resampled using the same extraction parame-
ters, but only allowing one dispense/re-aspiration cycle
(to prevent repeated collapse).

‘Contact’ LESA Sampling  ‘Contact’ LESA [23], in which the
pipette tip comes into contact with the surface rather than
forming a liquid microjunction, of DBS was carried out using
the Triversa Nanomate coupled with the Synapt G2S mass
spectrometer (Waters, Manchester, UK). In this process, 10
pL of solvent (95:5 ammonium acetate (10 mM, pH 6.8):meth-
anol) was aspirated from the solvent well and the robotic arm
relocated to a position above the DBS. The tip descended to a
depth such that it was in contact with the DBS. Once in
contact, 4 uL of solvent was dispensed and held in
contact for 10 s; 4.5 pL of solvent was re-aspirated
and infused into the mass spectrometer at a gas pressure
of 0.3 psi and 1.5 kV.

Direct Infusion Electrospray

For comparison, direct infusion electrospray mass spectra of
solution-phase samples of the standard proteins were acquired.
Ten uM solutions of myoglobin or hemoglobin were prepared
in ammonium acetate (10 mM, pH 6.8). Five uL aliquots were
introduced into the mass spectrometer via the Triversa
Nanomate in positive mode at a gas pressure of 1.0 psi and
an ionization voltage of 1.7 kV.

Mass Spectrometry

Mass spectrometry experiments were performed on an Orbitrap
Velos ETD mass spectrometer (Thermo Fisher Scientific,
Bremen, Germany) and a quadrupole time of flight Synapt
G2S, (Waters, Manchester, UK).

For the Orbitrap Velos, all mass spectra were recorded in
full scan mode in the Orbitrap at a resolution of 100,000 at m/z
400. Automatic gain control (AGC) target was 1 x 10° charges
with a maximum inject time of 1000 ms. The ion transfer tube
was set at 250°C for all experiments other than LESA of
dried blood spot samples, in which it was set at 200°C.
The m/z range was 600—4000. Each scan comprised 50
co-added microscans. Data were acquired for 10 minutes.
Data were analyzed using Xcalibur software (ver. 2.1;
Thermo Fisher Scientific).

For the Synapt, all data were acquired in resolution mode
without traveling wave ion mobility. For LESA experiments,
the scan time was 2 s and m/z range was 1000-5000. For the
‘contact’” LESA experiments, the scan time was 10 s and the
m/z range was 600—-8000. The source temperature was set to
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30°C and the cone voltage was set at 45 V. Data were acquired
for 5 min in full scan mode only. Data were analyzed usinsg
Mass Lynx software (ver. 4.1, Waters).

Results and Discussion

The proteins studied in this work were myoglobin (Mb) and
hemoglobin (Hb). In the native state, myoglobin comprises the
polypeptide chain (apo-myoglobin) noncovalently bound to
the prosthetic heme group. Hemoglobin exists as a
noncovalently bound tetramer comprising two a-globin chains
and two B-globin chains where each globin chain is
noncovalently bound to a heme group. Assembly of the tetra-
mer proceeds via association of two o/'p" dimers (*! indicates
heme group) [28]. We have considered standard lyophilized
proteins (Mb and Hb) and dried blood spots (Hb).

Native LESA Mass Spectrometry of Myoglobin

Figure 1 shows the results obtained following LESA mass
spectrometry of myoglobin dried onto glass and PVDF sur-
faces. Figure 1a and ¢ show results obtained on the Orbitrap
and Figure 1b and d on the Q-TOF. LESA MS of myoglobin on
glass resulted in detection of the noncovalent myoglobin—heme
complex (holomyoglobin) Mb". Dominant peaks in the
Orbitrap mass spectrum correspond to the 9+, 8+, and 7+
charge states of holomyoglobin at m/z 1952.78, 2196.75, and
2510.42. (Stated m/z values from Orbitrap data are for the most
abundant isotopic peak). The Q-TOF spectrum showed peaks
corresponding to the 9+, 8+, 7+, and 6+ charge states of Mb at
m/z 1953, 2197, 2510, and 2927. (Stated m/z values from Q-
TOF data correspond to the maximum peak height).
Differences in the observed charge states are likely due to the
capillary temperatures of the Orbitrap and the Q-TOF: higher
temperatures can favor the formation of higher charge states
[29]. Higher temperatures can lead to greater unfolding of the
protein, thus exposing more basic amino acid residues (with
subsequent protonation). Additionally, higher temperatures
may lead to more effective desolvation during ionization [10].
Heating during desolvation helps eliminate neutral molecules
that become deposited on the protein, which may prevent it
from obtaining high charge states [9, 29]. Peaks corresponding
to apo-myoglobin were observed at low abundance in both the
Q-TOF mass spectrum and the Orbitrap spectrum. Notably, the
peaks corresponding to apomyoglobin are of higher abundance
in the Q-TOF spectrum compared with those in the Orbitrap
mass spectrum. Given that the samples were prepared identi-
cally and that higher temperatures were encountered in the
Orbitrap (see above), it is likely that this observation is the
result of differences in ion transfer parameters in the two
instruments. There are numerous singly and doubly charged
peaks below m/z 1200 in the Orbitrap mass spectrum, which
correspond to a polymeric background ion with a repeating unit
of mass 44 Da. For comparison, the direct infusion mass
spectra of myoglobin obtained on the Orbitrap and Q-TOF
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Figure 1. Native LESA mass spectra of myoglobin: (a) glass substrate, Orbitrap mass analyzer; (b) glass substrate, Q-TOF mass
analyzer; (c) PVDF substrate, Orbitrap mass analyzer; (d) PVDF substrate, Q-TOF mass analyzer

instruments are shown in Figure 2a and b. The peaks corre-
sponding to noncovalent complexes and the charge state dis-
tributions match those observed in the LESA mass spectra.
There are no peaks corresponding to apomyoglobin, suggest-
ing that dissociation occurs in the drying and/or extraction
process. There are also no dominant peaks at m/z <1200,
suggesting that those peaks observed in the LESA mass spec-
trum may originate from the glass substrate.

The dominant peak observed following LESA MS on the
Orbitrap (Figure 1c) of myoglobin dried onto PVDF
corresponded to the sodiated noncovalent complex in the 8+
charge state (m/z 2199.51). Sodiated Mb'" was also observed in
the 7+ charge state (m/z 2513.58). Peaks corresponding to
sodiated apomyoglobin in the +10 to +14 charge states were also
observed. The LESA mass spectrum obtained on the Q-TOF
(Figure 1d) was dominated by peaks corresponding to
apomyoglobin in the +9 to +16 charge states. Relatively low
abundance peaks corresponding to the +7 and +8 charge states of
the noncovalent Mb" complex (m/z 2510 and 2196) were ob-
served. The results suggest that PVDF is not a suitable substrate
for native LESA mass spectrometry. PVDF is a synthetic

hydrophobic polymeric membrane. Hydrophobic surfaces have
been postulated to denature proteins through interactions between
hydrophobic amino residues and the surface. These interactions
cause the protein to spread and unfold the native structure [30].

Mass spectra obtained from both instruments show evi-
dence of salt adducts alongside the major protonated species.
Salt adducts are a common problem for native mass spectrom-
etry [31]. For solution-phase native mass spectrometry, some
offline desalting procedures such as size exclusion chromatog-
raphy and dialysis are available to prevent this occurrence [32];
however in the present case, there are very few options avail-
able as the LESA sampling routine cannot accommodate these
offline desalting stages. Nevertheless, protonated ions remain
the dominant species in all cases with the exception of the
Orbitrap analysis of myoglobin from PVDF.

Native LESA Mass Spectrometry of Hemoglobin
from Glass and PVDF

Figure 3 shows the results obtained following LESA MS of
hemoglobin standard dried onto glass and PVDF substrates.
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Figure 2. Direct infusion native ESI mass spectra of (@) myoglobin obtained with Orbitrap mass analyzer; (b) myoglobin obtained
with Q-TOF mass analyzer; (c) hemoglobin obtained with Orbitrap mass analyzer; (d) hemoglobin obtained with Q-TOF mass

analyzer

For comparison, the direct infusion mass spectra of the protein
are shown in Figure 2c and d. As described above, in its native
state hemoglobin exists as a noncovalent tetramer of the form
(ap),*. Figure 3a shows the mass spectrum obtained on the
Orbitrap following LESA of the glass substrate. The spectrum
is characterized by noncovalent ' and p" monomers,
noncovalent heterodimers (af)*"', and those with a single heme
(aP)". Heme-deficient dimers have been reported in previous
examples of native hemoglobin analysis [33, 34]. It is notable
that the B monomer was of significantly lower abundance than
the o' monomer. Also observed are peaks corresponding to
beta globin with a mass shift Am +32 Da. This obser-
vation has been reported previously and has been spec-
ulated to be due to oxidation of the beta chain [33].
Tetramers were not observed. Similar results were ob-
tained following LESA of the PVDF substrate
(Figure 3c), although the relative abundance of the di-
mers was lower. The LESA MS results are in good
agreement with the direct infusion ESI results

(Figure 2). The relative abundance of the dimers was
higher following direct infusion ESI and no dominant
peaks at m/z <800 were observed.

Results obtained on the Q-TOF are shown in
Figure 3b and d. LESA MS from the glass substrate
resulted in detection of noncovalent heme-bound monomers,
dimers (af)*™ and (ap)", and tetramers in the +16, +15, and
+14 charge states (m/z 4070, 4345, and 4663, respectively). A
similar mass spectrum was obtained following direct infusion
ESI of hemoglobin (Figure 2d), although interestingly the
relative abundance of the tetramers was greater in the LESA
mass spectrum. The Q-TOF mass spectrum obtained following
LESA of the PVDF substrate (Figure 3d) is similar to that
obtained from glass in terms of species observed; however,
the signal-to-noise was much lower. The tetramer peaks are
barely discernible above the noise.

The tetramer peaks in these spectra are very broad ( width
~100 Th), which is consistent with previously published ex-
amples of native hemoglobin tetramers [14, 33]. This
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Figure 3. Native LESA mass spectra of hemoglobin: (a) glass substrate, Orbitrap mass analyzer; (b) glass substrate, Q-TOF mass
analyzer; (c) PVDF substrate, Orbitrap mass analyzer; (d) PVDF substrate, Q-TOF mass analyzer

broadening is likely due to the presence of salt adducts
and unevaporated solvent molecules. Commercially avail-
able time of flight mass analyzers do not have sufficient
resolving power to distinguish monosodium adducts from
their protonated counterparts at m/z >4000 [35], so the
resulting peaks appear to be very broad, and exact
masses cannot be determined. Dimer peaks observed
following LESA from glass are much broader in the Q-
TOF data than those in the Orbitrap data. It is clear from
the Orbitrap data that for dimers, the protonated species
are dominant, with sodiated and potassiated adducts also
observed; however, it is not possible to distinguish be-
tween the various adducts in the Q-TOF mass spectra. A
further contributor to peak width may be insufficient
desolvation. The temperature of the Q-TOF inlet was 30°C as
opposed to 250°C for the Orbitrap. Lower temperatures can
prevent dissociation of unstable complexes (which could ex-
plain why it is possible to observe hemoglobin tetramers on the
Q-TOF and not the Orbitrap); however, the complex may be
associated with solvent adducts, thus generating broader peaks
[36, 37].

Native LESA Mass Spectrometry of Dried Blood
Spots

Figure 4 shows the results obtained following native LESA MS
of dried blood spots on filter card. The concentration of hemo-
globin in human blood is approximately 130 mg/mL for a
healthy adult male and 120 mg/mL for a healthy adult female
[38]. Results obtained from the Orbitrap (Figure 4a) were
similar to those of the hemoglobin standard, showing the
presence of (af)*"! dimers, (o)™ dimers, o', B, and unbound
monomers. The relative abundance of the (()L[S)2H dimer was
greater from the DBS sample than the protein standard. This
observation may be the result of reducing the inlet capillary
temperature to 200°C. Tetramers were not observed in the
Orbitrap data; however, these were observed in the Q-TOF
mass spectrum (Figure 4b). Native LESA MS using the Q-
TOF resulted in detection of (af),*"" tetramers, o dimers,
ap™ dimers, o', and p". As for the standard protein, the
tetramer peaks are broad (~100 Th) wide, but the relative
abundance of the tetramers is much higher. Figure 4c shows
the mass spectrum obtained following ‘contact’ LESA
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Figure 4. Native LESA mass spectra of hemoglobin from dried blood spots: (a) Orbitrap mass analyzer; (b) Q-TOF mass analyzer;

(c) ‘contact’ LESA with Q-TOF mass analyzer

sampling [23] of DBS. The results suggest that this approach is
particularly suitable for the analysis of Hb tetramers from DBS.
The relative abundance of the peaks corresponding to the tetra-
mers is greater than following standard LESA. In addition, the
peak widths are ~80 Th. The observation of Hb tetramers
directly from dried blood spots is an exciting one: the native
LESA mass spectrometry approach could be useful in studying
disorders of hemoglobin synthesis such as thalassemia. These
disorders can result in the production of unusual hemoglobin
tetramers such as Hb Barts, a tetramer composed of four gamma
chains, or HbH, a tetramer composed of four beta chains [39].

Conclusions

We have demonstrated that LESA mass spectrometry can
be successfully applied to the analysis of noncovalent
complexes of proteins dried onto surfaces.
Holomyoglobin could be detected from glass and PVDF
substrates, as could heme-bound hemoglobin dimers and
monomers. Generally, glass outperformed PVDF as a
native LESA substrate. Hemoglobin tetramers could be
detected from glass microscope slides and DBS. The

latter is particularly significant as DBS are a convenient
clinical sampling format but present a highly complex
sample. Results from ‘contact’” LESA of DBS were es-
pecially encouraging as the relative abundance of the
tetramers was greater than observed via standard LESA.
The Q-TOF mass spectrometer proved to be more suc-
cessful than the Orbitrap when analyzing hemoglobin
tetramers; however, the analysis of smaller complexes
benefitted from the resolution provided by the Orbitrap.

Acknowledgments

N.J.M. received an EPSRC CASE studentship in association
with Advion Biosciences. R.L.E. was funded by an EPSRC
studentship. H.J.C. and R.L.G. are funded by EPSRC (EP/
L023490/1).The Advion Triversa Nanomate and Thermo Fish-
er Orbitrap Velos mass spectrometer used in this research were
funded through the Birmingham Science City Translational
Medicine: Experimental Medicine Network of Excellence Pro-
ject, with support from Advantage West Midlands (AWM).
The Waters Synapt G2S mass spectrometer was funded by
EPSRC (EP/K039245/1).



N. J. Martin et al.: Native LESA Mass Spectrometry

Open Access

This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unre-
stricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons
license, and indicate if changes were made.

References

1.

17.

18.

Fenn, J.B., Mann, M., Meng, C.K., Wong, S.U., Whitehouse, C.M.:
Electrospray ionization for mass spectrometry of large biomolecules.
Science 246, 64-71 (1989)

. Loo, J.A.: Studying noncovalent protein complexes by electrospray ioni-

zation mass spectrometry. Mass Spectrom. Rev. 16, 1-23 (1997)

. Katta, V., Chait, B.T.: Observation of the heme—globin complex in native

myoglobin by electrospray-ionization mass spectrometry. J. Am. Chem.
Soc. 113, 8535-8537 (1991)

. Light-Wahl, K.J., Schwartz, B.L., Smith, R.D.: Observation of the

noncovalent quaternary associations of proteins by electrospray ionization
mass spectrometry. J. Am. Chem. Soc. 116, 5271-5278 (1994)

. Van den Heuvel, R.H.H., Heck, A.J.R.: Native protein mass spectrometry:

from intact oligomers to functional machineries. Curr. Opin. Chem. Biol. 8,
519-526 (2004)

. Heck, AJ.R.: Native mass spectrometry: a bridge between interactomics

and structural biology. Nat. Methods 5, 927-933 (2008)

. Pramanik, B.N., Bartner, P.L., Mirza, U.A., Liu, Y.H., Ganguly, A.K.:

Electrospray ionization mass spectrometry for the study of noncovalent
complexes: an emerging technology. J. Mass Spectrom. 33, 911-920
(1998)

. Heck, J.R., Van den Heuvel, R.H.H.: Investigation of intact protein com-

plexes by mass spectrometry. Mass Spectrom. Rev. 23, 368-389 (2003)

. Felitsyn, N., Peschke, M., Kebarle, P.: Origin and number of charges

observed on multiply-protonated native proteins produced by ESI. Int. J.
Mass Spectrom. 219, 36-62 (2002)

. Loo, J.A.: Electrospray ionization mass spectrometry: a technology for

studying noncovalent macromolecular complexes. Int. J. Mass Spectrom.
200, 175186 (2000)

. Sobott, F., Robinson, C.V.: Protein complexes gain momentum. Curr.

Opin. Struct. Biol. 12, 729-734 (2002)

. Glocker, M., Bauer, S.H.J., Kast, J., Volz, J., Przybylski, M.:

Characterization of specific noncovalent protein complexes by UV
matrix-assisted laser desorption ionization mass spectrometry. J. Mass
Spectrom. 31, 1221-1227 (1996)

. Takats, Z., Wiseman, J.M., Gologan, B., Cooks, G.R.: Electrosonic spray

ionization. A gentle technique for generating folded proteins and protein
complexes in the gas phase and for studying ion-molecule reactions at
atmospheric pressure. Anal. Chem. 76, 4050—4058 (2004)

. Zhang, Y., Ju, Y., Huang, C., Wysocki, V.H.: Paper spray ionization of

noncovalent protein complexes. Anal. Chem. 86, 1342-1346 (2014)

. Van Berkel, G.J.: Thin-layer chromatography and electrospray mass spec-

trometry coupled using a surface sampling probe. Anal. Chem. 74, 6216~
6223 (2002)

. Kertesz, V., Van Berkel, G.J.: Fully automated liquid extraction-based

surface sampling and ionization using a chip-based robotic
nanoelectrospray platform. J. Mass Spectrom. 45, 252-260 (2010)
Walworth, M.J., EINaggar, S.M., Stankovich, J.J., Witkowski, W., Norris,
J.L., Van Berkel, G.J.: Direct sampling and analysis from solid-phase
extraction cards using an automated liquid extraction surface analysis
nanoelectrospray mass spectrometry system. Rapid Commun. Mass
Spectrom. 25, 23892396 (2011)

Stegemann, C., Drozdov, 1., Shalhoub, J., Humphries, J., Ladroue, C.,
Didangelos, A., Baumert, M., Allen, M., Davies, A.H., Monaco, C.,

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

1327

Smith, A., Xu, Q., Mayr, M.: Comparative lipidomics profiling of
human atherosclerotic plaques. Circ. Cardiovasc. Genet. 4, 232-242
(2011)

Walworth, M.J., Stankovich, J.J., Van Berkel, G.J., Schulz, M., Minarik, S.:
High-performance thin-layer chromatography plate blotting for liquid
microjunction surface sampling probe mass spectrometric analysis of
analytes separated on a wettable phase plate. Rapid Commun. Mass
Spectrom. 36, 37-42 (2012)

Sarsby, J., Martin, N.J., Lalor, P.F., Bunch, J., Cooper, H.J.: Top down and
bottom up identification of proteins by liquid extraction surface analysis
mass spectrometry of healthy and diseased human liver tissue. J. Am. Mass
Spectrom. 25, 1953-1961 (2014)

Edwards, R.L., Creese, A.J., Baumert, M., Griffiths, P., Bunch, J., Cooper,
H.J.: Hemoglobin variant analysis via direct surface sampling of dried
blood spots coupled with high-resolution mass spectrometry. Anal.
Chem. 83, 2265-2270 (2011)

Schey, K.L., Anderson, D.M., Rose, K.L.: Spatially directed protein iden-
tification from tissue sections by top down LC-MS/MS with electron
transfer dissociation. Anal. Chem. 85, 67676774 (2013)

Randall, E.C., Bunch, J., Cooper, H.J.: Direct analysis of intact proteins
from Escherichia coli colonies by liquid extraction surface analysis mass
spectrometry. Anal. Chem. 86, 10504 (2014)

Arakawa, T., Prestrelski, S.J., Kenney, W.C., Carpenter, J.F.: Factors
affecting short-term and long-term stabilities of proteins. Adv. Drug
Deliv. Rev. 46, 307-326 (2001)

Sowemimo-Coker, S.: Red blood cell hemolysis during processing.
Transfus. Med. Rev. 16, 46-60 (2002)

Kanias, T., Acker, J.P.: Biopreservation of red blood cells the struggle with
hemoglobin oxidation. FEBS Lett. 277, 343-356 (2010)

Marshall, W.J., Bangert, S.K.: Clinical Chemistry, 6th edn. Elsevier,
Edinburgh, pp. 395-396 (2008)

Adach, K., Zhao, Y., Surrey, S.: Assembly of human hemoglobin (Hb) and
globin chains expressed in a cell-free system with globin chains to form Hb
A and Hb F*. J. Biol. Chem. 277, 13415-13420 (2002)

Benesch, J.L.P., Sobott, F., Robinson, C.V.: Thermal dissociation of
multimeric protein complexes by using nanoelectrospray mass spectrome-
try. Anal. Chem. 75, 2208-2214 (2003)

Moulin, A.M., O’Shea, S.J., Badley, R.A., Doyle, P., Welland, M.E.:
Measuring surface induced conformational changes in proteins. Langmuir
15, 8776-8779 (1999)

Moini, M.: Metal displacement and stoichiometry of protein—metal com-
plexes under native conditions using capillary electrophoresis/mass spec-
trometry. Rapid Commun. Mass Spectrom. 24, 2730-2734 (2010)

Pan, J., Xu, K., Yang, X., Choy, W.Y., Konermann, L.: Solution phase
chelators for suppressing nonspecific protein—metal interactions in
electrospray mass spectrometry. Anal. Chem. 81, 5008-5015 (2009)
Simmons, D.A., Wilson, D.J., Lajoie, G.A., Doherty-Kirby, A.,
Konermann, L.: Subunit disassembly and unfolding kinetics of hemoglo-
bin studied by time-resolved electrospray mass spectrometry. Biochemistry
43, 14792-14801 (2004)

Griffith, W.P., Kaltashov, I.A.: Highly asymmetric interactions between
globin chains during hemoglobin assembly revealed by electrospray ioni-
zation mass spectrometry. Biochemistry 42, 10024—-10033 (2003)

Lossl, P., Snijder, J., Heck, A.J.: Boundaries of mass resolution in native
mass spectrometry. J. Am. Mass Spectrom. 25, 906-917 (2014)

Veenstra, T.D., Tomlinson, A.J., Benson, L., Kumar, R., Naylor, S.: Low
temperature aqueous electrospray ionization mass spectrometry of
noncovalent complexes. J. Am. Soc. Mass Spectrom. 9, 580584 (1998)
Loo, R.O., Goodlett, D.R., Smith, R.D., Loo, J.A.: Observation of a
noncovalent ribonuclease s-protein/s-peptide complex by electrospray ion-
ization mass spectrometry. J. Am. Chem. Soc. 115, 4391-4392 (1993)
WHO. Haemoglobin concentrations for the diagnosis of anaemia and
assessment of severity. Vitamin and Mineral Nutrition Information
System. Geneva, World Health Organization, (2011). Available at: http://
www.who.int/vmnis/indicators/haemoglobin.pdf. Accessed 2 Feb 2014
Muncie, H.L., Campbell, S.J.: Alpha and Beta Thalassemia. Am. Fam.
Physician 4, 339-344 (2009)


http://www.who.int/vmnis/indicators/haemoglobin.pdf
http://www.who.int/vmnis/indicators/haemoglobin.pdf

	Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates
	Abstract
	Section12
	Section13
	Section24
	Section25
	Section26
	LESA Sampling
	‘Contact’ LESA Sampling

	Section29
	Section210

	Section111
	Section212
	Section213
	Section214

	Section115
	Acknowledgments
	References


