3,217 research outputs found

    Progressive Taxation And Happiness

    Get PDF
    This Article explores the optimal level of income redistribution by examining the potential welfare gains from redistributive tax and spending policies. Drawing on recent research on human happiness, this Article argues that while wealthy nations are generally happier than their poorer counterparts, neither national nor individual economic growth appear to have an appreciable impact on the subjective well-being of the citizens of relatively wealthy nations. Significant causes of this finding include the problem of rivalry—that increases in the income of some depress the happiness of others—and the fact that individuals overestimate the degree to which additional consumption will improve their happiness. Studies show the level of inequality in a society also may affect levels of happiness. Ultimately, happiness research is consistent with the strongest justification for adopting a progressive tax structure--income has declining marginal utility thus redistribution can increase total welfare in a society

    Gangs, Schools and Stereotypes

    Get PDF

    Rooftop and ground standard temperatures: a comparison of physical differences

    Get PDF
    July 2000.Includes bibliographical references (pages 48-49).Accuracy and continuity of surface air temperature measurements are critical for many meteorological activities including short-term weather forecasting, warnings, and climate monitoring. In the United States and worldwide, most air temperature observations have historically been taken at a height of approximately 1.25 to 1.5 meters above the ground over a grass surface. In the last two decades, there has been a rapid expansion of nonfederal weather station networks to support state, regional and community needs. Many of these new weather stations are located on rooftops for reasons of security or convenience. Mixing these rooftop observations indiscriminately with observations from standard screen-height can pose significant issues for weather forecasting and verification, weather and climate analysis and climate applications such as energy demand planning and forecasting by large public utilities. This study establishes the physical mechanisms which cause a rooftop sensor to have a temperature bias relative to a nearby ground sensor. From a surface energy balance perspective, the physical characteristics of a surface are analyzed and related to temperature bias. This study identifies the surfaces and conditions leading to rooftop temperature bias in both maximum and minimum temperatures. These concepts are verified through both surface radiating temperature measurements and air temperature measurements contrasting roof and ground temperatures. Guidelines are then proposed to establish which roofs are unsuitable for temperature measurements and under what conditions a rooftop is vulnerable to temperature bias. Results indicate that overcast skies lead to small rooftop to ground differences in both surface radiating temperature and air temperature. Observations show differences of approximately 1 degree C or less in radiating temperature and less than 1 degree C in air temperature. An exception was observed where a wall effect led to more than a 2 degree C difference in air temperatures between roof and ground. Clear or partly cloudy skies allow larger rooftop temperature biases to develop. Roof to ground differences in surface radiating temperatures of up to 30 degrees C were observed. Although air temperature measurements were not made at all locations, observations show roof to ground differences of 3 degrees C for radiating temperature differences of 14 degrees C. The potential for even greater roof-ground air temperature differences exists at sites where radiating temperatures are further apart.Supported by the NOAA, National Weather Service, Office of Meteorology under grant NA67RJ0 152 Amend 21

    Hybridised multigrid preconditioners for a compatible finite element dynamical core

    Full text link
    Compatible finite element discretisations for the atmospheric equations of motion have recently attracted considerable interest. Semi-implicit timestepping methods require the repeated solution of a large saddle-point system of linear equations. Preconditioning this system is challenging since the velocity mass matrix is non-diagonal, leading to a dense Schur complement. Hybridisable discretisations overcome this issue: weakly enforcing continuity of the velocity field with Lagrange multipliers leads to a sparse system of equations, which has a similar structure to the pressure Schur complement in traditional approaches. We describe how the hybridised sparse system can be preconditioned with a non-nested two-level preconditioner. To solve the coarse system, we use the multigrid pressure solver that is employed in the approximate Schur complement method previously proposed by the some of the authors. Our approach significantly reduces the number of solver iterations. The method shows excellent performance and scales to large numbers of cores in the Met Office next-generation climate- and weather prediction model LFRic.Comment: 24 pages, 13 figures, 5 tables; accepted for publication in Quarterly Journal of the Royal Meteorological Societ

    Ames collaborative study of cosmic ray neutrons

    Get PDF
    The results of a collaborative study to define both the neutron flux and the spectrum more precisely and to develop a dosimetry package that can be flown quickly to altitude for solar flare events are described. Instrumentation and analysis techniques were used which were developed to measure accelerator-produced radiation. The instruments were flown in the Ames Research Center high altitude aircraft. Neutron instrumentation consisted of Bonner spheres with both active and passive detector elements, threshold detectors of both prompt-counter and activation-element types, a liquid scintillation spectrometer based on pulse-shape discrimination, and a moderated BF3 counter neutron monitor. In addition, charged particles were measured with a Reuter-Stokes ionization chamber system and dose equivalent with another instrument. Preliminary results from the first series of flights at 12.5 km (41,000 ft) are presented, including estimates of total neutron flux intensity and spectral shape and of the variation of intensity with altitude and geomagnetic latitude
    • …
    corecore