264 research outputs found

    WISE J163940.83-684738.6: A Y Dwarf identified by Methane Imaging

    Get PDF
    We have used methane imaging techniques to identify the near-infrared counterpart of the bright WISE source WISEJ163940.83-684738.6. The large proper motion of this source (around 3.0arcsec/yr) has moved it, since its original WISE identification, very close to a much brighter background star -- it currently lies within 1.5" of the J=14.90+-0.04 star 2MASS16394085-6847446. Observations in good seeing conditions using methane sensitive filters in the near-infrared J-band with the FourStar instrument on the Magellan 6.5m Baade telescope, however, have enabled us to detect a near-infrared counterpart. We have defined a photometric system for use with the FourStar J2 and J3 filters, and this photometry indicates strong methane absorption, which unequivocally identifies it as the source of the WISE flux. Using these imaging observations we were then able to steer this object down the slit of the FIRE spectrograph on a night of 0.6" seeing, and so obtain near-infrared spectroscopy confirming a Y0-Y0.5 spectral type. This is in line with the object's near-infrared-to-WISE J3--W2 colour. Preliminary astrometry using both WISE and FourStar data indicates a distance of 5.0+-0.5pc and a substantial tangential velocity of 73+-8km/s. WISEJ163940.83-684738.6 is the brightest confirmed Y dwarf in the WISE W2 passband and its distance measurement places it amongst the lowest luminosity sources detected to date.Comment: Accepted for publication in The Astrophysical Journal, 20 September 201

    WISE Brown Dwarf Binaries: The Discovery of a T5+T5 and a T8.5+T9 System

    Get PDF
    The multiplicity properties of brown dwarfs are critical empirical constraints for formation theories, while multiples themselves provide unique opportunities to test evolutionary and atmospheric models and examine empirical trends. Studies using high-resolution imaging cannot only uncover faint companions, but they can also be used to determine dynamical masses through long-term monitoring of binary systems. We have begun a search for the coolest brown dwarfs using preliminary processing of data from the Wide-field Infrared Survey Explorer and have confirmed many of the candidates as late-type T dwarfs. In order to search for companions to these objects, we are conducting observations using the Laser Guide Star Adaptive Optics system on Keck II. Here we present the first results of that search, including a T5 binary with nearly equal mass components and a faint companion to a T8.5 dwarf with an estimated spectral type of T9

    Hubble Space Telescope Spectroscopy of Brown Dwarfs Discovered with the Wide-field Infrared Survey Explorer

    Get PDF
    We present a sample of brown dwarfs identified with the {\it Wide-field Infrared Survey Explorer} (WISE) for which we have obtained {\it Hubble Space Telescope} ({\it HST}) Wide Field Camera 3 (WFC3) near-infrared grism spectroscopy. The sample (twenty-two in total) was observed with the G141 grism covering 1.10−-1.70 μ\mum, while fifteen were also observed with the G102 grism, which covers 0.90−-1.10 μ\mum. The additional wavelength coverage provided by the G102 grism allows us to 1) search for spectroscopic features predicted to emerge at low effective temperatures (e.g.\ ammonia bands) and 2) construct a smooth spectral sequence across the T/Y boundary. We find no evidence of absorption due to ammonia in the G102 spectra. Six of these brown dwarfs are new discoveries, three of which are found to have spectral types of T8 or T9. The remaining three, WISE J082507.35++280548.5 (Y0.5), WISE J120604.38++840110.6 (Y0), and WISE J235402.77++024015.0 (Y1) are the nineteenth, twentieth, and twenty-first spectroscopically confirmed Y dwarfs to date. We also present {\it HST} grism spectroscopy and reevaluate the spectral types of five brown dwarfs for which spectral types have been determined previously using other instruments.Comment: Accepted for publication in the Astrophysical Journal. 20 pages, 18 figures, 7 table

    FIRE Spectroscopy of Five Late-type T Dwarfs Discovered with the Wide-field Infrared Survey Explorer

    Get PDF
    We present the discovery of five late-type T dwarfs identified with the Wide-field Infrared Survey Explorer (WISE). Low-resolution near-infrared spectroscopy obtained with the Magellan Folded-port InfraRed Echellette (FIRE) reveal strong water and methane absorption in all five sources, and spectral indices and comparison to spectral templates indicate classifications ranging from T5.5 to T8.5:. The spectrum of the latest-type source, WISE J1812+2721, is an excellent match to that of the T8.5 companion brown dwarf Wolf 940B. WISE-based spectrophotometric distance estimates place these T dwarfs at 12-13 pc from the Sun, assuming they are single. Preliminary fits of the spectral data to the atmosphere models of Saumon & Marley indicate effective temperatures ranging from 600 K to 930 K, both cloudy and cloud-free atmospheres, and a broad range of ages and masses. In particular, two sources show evidence of both low surface gravity and cloudy atmospheres, tentatively supporting a trend noted in other young brown dwarfs and exoplanets. In contrast, the high proper motion T dwarf WISE J2018-7423 exhibits a suppressed K-band peak and blue spectrophotometric J-K colors indicative of an old, massive brown dwarf; however, it lacks the broadened Y-band peak seen in metal-poor counterparts. These results illustrate the broad diversity of low-temperature brown dwarfs that will be uncovered with WISE.Comment: 19 pages, 13 figures; accepted for publication to Ap

    The DEEP3 Galaxy Redshift Survey: The Impact of Environment on the Size Evolution of Massive Early-type Galaxies at Intermediate Redshift

    Get PDF
    Using data drawn from the DEEP2 and DEEP3 Galaxy Redshift Surveys, we investigate the relationship between the environment and the structure of galaxies residing on the red sequence at intermediate redshift. Within the massive (10 < log(M*/Msun) < 11) early-type population at 0.4 < z <1.2, we find a significant correlation between local galaxy overdensity (or environment) and galaxy size, such that early-type systems in higher-density regions tend to have larger effective radii (by ~0.5 kpc or 25% larger) than their counterparts of equal stellar mass and Sersic index in lower-density environments. This observed size-density relation is consistent with a model of galaxy formation in which the evolution of early-type systems at z < 2 is accelerated in high-density environments such as groups and clusters and in which dry, minor mergers (versus mechanisms such as quasar feedback) play a central role in the structural evolution of the massive, early-type galaxy population.Comment: 11 pages, 5 figures, 2 tables; resubmitted to MNRAS after addressing referee's comments (originally submitted to journal on August 16, 2011

    A New Population of High-z, Dusty Lyα Emitters and Blobs Discovered by WISE: Feedback Caught in the Act?

    Get PDF
    By combining data from the NASA Wide-field Infrared Survey Explorer (WISE) mission with optical spectroscopy from the W. M. Keck telescope, we discover a mid-IR color criterion that yields a 78% success rate in identifying rare, typically radio-quiet, 1.6 ≾ z ≾ 4.6 dusty Lyα emitters (LAEs). Of these, at least 37% have emission extended on scales of 30-100 kpc and are considered Lyα "blobs" (LABs). The objects have a surface density of only ~0.1 deg^(–2), making them rare enough that they have been largely missed in deep, small area surveys. We measured spectroscopic redshifts for 92 of these galaxies, and find that the LAEs (LABs) have a median redshift of 2.3 (2.5). The WISE photometry coupled with data from Herschel (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) reveals that these galaxies are in the Hyper Luminous IR galaxy regime (L IR ≳ 10^(13)-10^(14) L_☉) and have warm colors. They are typically more luminous and warmer than other dusty, z ~ 2 populations such as submillimeter-selected galaxies and dust-obscured galaxies. These traits are commonly associated with the dust being illuminated by intense active galactic nucleus activity. We hypothesize that the combination of spatially extended Lyα, large amounts of warm IR-luminous dust, and rarity (implying a short-lived phase) can be explained if the galaxies are undergoing brief, intense "feedback" transforming them from an extreme dusty starburst/QSO into a mature galaxy
    • …
    corecore