10,158 research outputs found

    The Momentum flux in two-phase flow

    Get PDF
    The average momentum flux at a section of a pipe with twophase upflow has been measured by the impulse technique. Steamwater and air-water mixtures were tested in one-inch and onehalf inch nominal pipes. Homogeneous velocities ranging from 150 to 1200 ft/sec. and qualities from 5% to 85% were tested. The results are compared to the results of models currently in practice for predicting pressure drop and critical flow. The influence of the void fraction, the velocity profile, phase distribution and fluctuations upon the momentum flux are discussed.Sponsored by the U.S. Atomic Energy Commission DS

    Slug flow

    Get PDF
    Introduction: When two phases flow concurrently in a pipe, they can distribute themselves in a number of different configurations. The gas could be uniformly dispersed throughout the liquid in the form of small bubbles. There could be large gas bubbles almost filling the tube. There could be an annulus of liquid and core of vapor with or without drops of liquid in it. The interface could be smooth or wavy. When one describes how the phases are distributed, one is specifying the flow regime. Such a description is necessary before any mathematical model can be constructed which will predict a quantity such as pressure drop It is naive to expect that a single mathematical model would adequately encompass all possible two-phase flow regimes, even for a single geometric configuration. Therefore, we shall begin by saying that for this work the results that have been obtained and the conclusions that have been drawn apply only to fully developed slug flow in a round vertical pipe. Slug flow is characterized by large bubblesalmost filling the tubewhich are separated by slugs of liquid. The nose of the bubble is rounded and the tail generally flat. One may or may not find small bubbles in the slug following the large bubble. A number of typical slug flow bubbles are pictured in Figures 4-10. Bubbles very similar to these have been studied by Dumistrescu (1), and Davis and Taylor (2). Both these references consider the same problem. How rapidly will a closed tube full of liquid empty when the bottom is suddenly opened to the atmosphere. The approach used by both authors is to assume that the asymptotic rise velocity (for large times) can be calculated from potential flow theory. The boundary condition at the pipe wall is that the velocity is axial. At the bubble boundary it is assumed that the pressure is constant, The problem is then to find the shape of the bobble that would satisfy the constant pressure boundary condition.(cont.) This was done approximately and in both cases the comparison with experiment was satisfactory though the deviations became large for small tubes. The work of Davis and Taylor, and Dumitrescu served as the starting point for this investigation. The boundary condition at the bubble wall for large bubbles, constant pressure, was still valid to an excellent approximation and the finiteness of the slug flow bubbles did not appear to make much difference in their rise velocity. In the next section, the fluctuation period, the mean density, and the pressure drop will be expressed in terms of the pipe area, the Taylor bubble rise velocity and the flow rates of the two phases. In subsequent sections the observations rade of bubble shape, length and velocity will be described and then a comparison of computed and measured pressure drops given.Office of Naval Research DSR Projec

    Endohedral Impurities in Carbon Nanotubes

    Full text link
    A generalization of the Anderson model that includes pseudo-Jahn-Teller impurity coupling is proposed to describe distortions of an endohedral impurity in a carbon nanotube. Treating the distortion within mean-field theory, spontaneous axial symmetry breaking is found when the vibronic coupling strength g exceeds a critical value gc_c. The effective potential in the symmetry-broken state is found to have O(2) symmetry, in agreement with numerical calculations. For metallic zigzag nanotubes endohedrally-doped with transition metals in the dilute limit, the low-energy properties of the system may display two-channel Kondo behavior; however, strong vibronic coupling is seen to exponentially suppress the Kondo energy scale.Comment: 4 pages, 2 figure

    Advanced double layer capacitors

    Get PDF
    Work was conducted that could lead to a high energy density electrochemical capacitor, completely free of liquid electrolyte. A three-dimensional RuO sub x-ionomer composite structure has been successfully formed and appears to provide an ionomer ionic linkage throughout the composite structure. Capacitance values of approximately 0.6 F/sq cm were obtained compared with 1 F/sq cm when a liquid electrolyte is used with the same configuration

    The North Wyke Farm Platform: Fine Resolution (15-Minute) Hydrology and Water Quality Data

    Get PDF
    The North Wyke Farm Platform (NWFP) was established in 2010 to study and improve grassland livestock production at the farm-scale. The NWFP uses a combination of environmental sensors, routine field and lab-based measurements, and detailed management records to monitor livestock and crop production, emissions to water, emissions to air, soil health, and biodiversity. The rich NWFP datasets help researchers to evaluate the effectiveness of different grassland (and arable) farming systems, which in turn, contributes to the development of sustainable, resilient and net zero land management strategies. This document serves as a user guide to the hydrology and water quality data collected at a 15-minute temporal resolution from the NWFP. The guide gives details of the instrumentation, sensor calibration and data collection and is associated with other dedicated user guides that detail the design, establishment and development of the NWFP, field events, and the quality control process of datasets

    The North Wyke Farm Platform: Livestock Data

    Get PDF
    The North Wyke Farm Platform (NWFP) was established in 2010 to study and improve grassland livestock production at the farm-scale. The NWFP uses a combination of environmental sensors, routine field and lab-based measurements, and detailed management records to monitor livestock and crop production, emissions to water, emissions to air, soil health, and biodiversity. The rich NWFP datasets help researchers to evaluate the effectiveness of different grassland (and arable) farming systems, which in turn, contributes to the development of sustainable, resilient and net zero land management strategies. This document serves as a user guide to the collection and management of livestock data and is associated with other dedicated user guides that detail the design, establishment and development of the NWFP, and field events

    Breaking a one-dimensional chain: fracture in 1 + 1 dimensions

    Full text link
    The breaking rate of an atomic chain stretched at zero temperature by a constant force can be calculated in a quasiclassical approximation by finding the localized solutions ("bounces") of the equations of classical dynamics in imaginary time. We show that this theory is related to the critical cracks of stressed solids, because the world lines of the atoms in the chain form a two-dimensional crystal, and the bounce is a crack configuration in (unstable) mechanical equilibrium. Thus the tunneling time, Action, and breaking rate in the limit of small forces are determined by the classical results of Griffith. For the limit of large forces we give an exact bounce solution that describes the quantum fracture and classical crack close to the limit of mechanical stability. This limit can be viewed as a critical phenomenon for which we establish a Levanyuk-Ginzburg criterion of weakness of fluctuations, and propose a scaling argument for the critical regime. The post-tunneling dynamics is understood by the analytic continuation of the bounce solutions to real time.Comment: 15 pages, 5 figure

    Slip energy barriers in aluminum and implications for ductile versus brittle behavior

    Full text link
    We conisder the brittle versus ductile behavior of aluminum in the framework of the Peierls-model analysis of dislocation emission from a crack tip. To this end, we perform first-principles quantum mechanical calculations for the unstable stacking energy γus\gamma_{us} of aluminum along the Shockley partial slip route. Our calculations are based on density functional theory and the local density approximation and include full atomic and volume relaxation. We find that in aluminum γus=0.224\gamma_{us} = 0.224 J/m2^2. Within the Peierls-model analysis, this value would predict a brittle solid which poses an interesting problem since aluminum is typically considered ductile. The resolution may be given by one of three possibilites: (a) Aluminum is indeed brittle at zero temperature, and becomes ductile at a finite temperature due to motion of pre-existing dislocations which relax the stress concentration at the crack tip. (b) Dislocation emission at the crack tip is itself a thermally activated process. (c) Aluminum is actually ductile at all temperatures and the theoretical model employed needs to be significantly improved in order to resolve the apparent contradiction.Comment: 4 figures (not included; send requests to [email protected]
    • …
    corecore