10 research outputs found

    Comparison between noncontrast computed tomography and magnetic resonance imaging for detection and characterization of thoracolumbar myelopathy caused by intervertebral disk herniation in dogs

    Get PDF
    Magnetic resonance imaging (MRI) and computed tomography (CT) are commonly used to evaluate dogs with thoracolumbar myelopathy; however, relative diagnostic sensitivities for these two modalities have not been previously reported. The purpose of this prospective study was to compare diagnostic sensitivity and observer agreement for MRI and CT in a group of dogs with thoracolumbar myelopathy due to surgically confirmed intervertebral disk herniation (IVDH). All included dogs had magnetic resonance (MR) imaging followed by noncontrast CT using standardized protocols. Three experienced observers interpreted each imaging study independently without knowledge of clinical or surgical findings. The operating surgeon was aware of MR findings but not CT findings at the time surgical findings were recorded. Forty-four dogs met the inclusion criteria. The sensitivity of CT was 88.6% (79.5%–94.2%) and of MR was 98.5% (95% confidence interval, 94.1%–99.7%) for diagnosis of intervertebral disk herniation. Specificity was not calculated, as all dogs had IVDH at surgery. Magnetic resonance imaging was more accurate than CT for identifying the site of intervertebral disk herniation-associated spinal cord compression and differentiating disk extrusion vs. protrusion. Computed tomography was less accurate for lesion localization in per acute cases, as well as for chondrodystrophic, female, older and smaller (<7 kg) dogs. Inter-rater agreement was good for lesion lateralization for bothMR and CT (κ = 0.687, 95% CI = 0.552, 0.822, P = 0.002, and κ = 0.692, 95% CI = 0.542, 0.842, P = 0.003). Findings from the current study indicated that MR imaging was more sensitive and accurate than noncontrast CT for diagnosis and characterization of thoracolumbar myelopathy due to IVDH in dogs. Chttp://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1740-8261hb201

    MRI ischemic and hemorrhagic lesions in arterial and venous territories characterize central nervous system intravascular lymphoma in dogs.

    No full text
    Intravascular lymphoma (IVL) is characterized by the proliferation of large malignant lymphocytes within the lumen of blood vessels. This retrospective, multi-center, case series study aimed to describe the MRI features of confirmed central nervous system IVL in dogs and compare them with histopathological findings. Medical record databases from seven veterinary centers were searched for cases of histologically confirmed IVL. Dogs were included if an MRI was performed. The MRI studies and histopathology samples were reviewed to compare the MRI changes with the histopathological findings. Twelve dogs met the inclusion criteria (12 brains and three spinal cords). Imaging of the brains revealed multifocal T2-weighted/FLAIR hyperintense and T1-weighted iso-hypointense lesions, with variable contrast enhancement; areas of abnormal diffusion both in arterial and venous territories in diffusion-weighted imaging; and meningeal enhancement. On gradient echo images (GRE), the changes comprised tubular susceptibility artifacts, consistent with the "susceptibility vessel sign", and additional variably sized/shaped intraparenchymal susceptibility artifacts. Spinal cord lesions presented as fusiform T2-weighted hyperintensities with scattered susceptibility artifacts on GRE and variable parenchymal and meningeal contrast enhancement. On histopathology, subarachnoid hemorrhages and neuroparenchymal areas of edema and necrosis, with or without hemorrhage, indicating ischemic and hemorrhagic infarctions, were found. These lesions were concurrent with severely dilated meningeal and parenchymal arteries and veins plugged by neoplastic lymphocytes and fibrin. Due to the unique angiocentric distribution of IVL, ischemic and hemorrhagic infarcts of variable chronicity affecting both the arterial and venous territories associated with thrombi formation can be detected on MRI

    Environmental Factors Affecting Germination and Seedling Survival of Carolina Willow (Salix Caroliniana)

    No full text
    In recent decades, invasive shrubs have replaced herbaceous wetlands in many parts of the world. In Florida, the native shrub Salix caroliniana Michx. (Carolina willow) expanded its distribution throughout the upper St. Johns River, replacing herbaceous marshes with willow swamps. To identify ways to prevent its expansion, we experimentally tested the effects of watering regime, temperature, substrate, and seed source on willow germination and seedling survival. In growth chamber experiments, germination and survival were most affected by watering regime and were greatest in saturated, organic soils. Survival decreased with soil inundation and on drier, sandy soils. Variable texture and nutrient content in native soils had no differential effect on germination or survivability of willow. Time of seed production, seed source, and delay in watering significantly affected germination. Seed germination occurred quickly after being sown. However, seed viability declined just as quickly. Whenever a soil held sufficient water, especially through capillarity, seeds of Carolina willow germinated and survived well. Seasonal manipulation of water levels to flood marshes during seed-fall and to inundate willow seedlings provides managers with an effective strategy for reducing establishment of Carolina willow. © Society of Wetland Scientists 2014

    Coral Fluorescent Proteins as Antioxidants

    Get PDF
    Caroline V. Palmer is with Newcastle University and James Cook University, Chintan K. Modi is with UT Austin, Laura D. Mydlarz is with UT Arlington.Background -- A wide array of fluorescent proteins (FP) is present in anthozoans, although their biochemical characteristics and function in host tissue remain to be determined. Upregulation of FP's frequently occurs in injured or compromised coral tissue, suggesting a potential role of coral FPs in host stress responses. Methodology/Principal Findings -- The presence of FPs was determined and quantified for a subsample of seven healthy Caribbean coral species using spectral emission analysis of tissue extracts. FP concentration was correlated with the in vivo antioxidant potential of the tissue extracts by quantifying the hydrogen peroxide (H2O2) scavenging rates. FPs of the seven species varied in both type and abundance and demonstrated a positive correlation between H2O2 scavenging rate and FP concentration. To validate this data, the H2O2 scavenging rates of four pure scleractinian FPs, cyan (CFP), green (GFP), red (RFP) and chromoprotein (CP), and their mutant counterparts (without chromophores), were investigated. In vitro, each FP scavenged H2O2 with the most efficient being CP followed by equivalent activity of CFP and RFP. Scavenging was significantly higher in all mutant counterparts. Conclusions/Significance -- Both naturally occurring and pure coral FPs have significant H2O2 scavenging activity. The higher scavenging rate of RFP and the CP in vitro is consistent with observed increases of these specific FPs in areas of compromised coral tissue. However, the greater scavenging ability of the mutant counterparts suggests additional roles of scleractinian FPs, potentially pertaining to their color. This study documents H2O2 scavenging of scleractinian FPs, a novel biochemical characteristic, both in vivo across multiple species and in vitro with purified proteins. These data support a role for FPs in coral stress and immune responses and highlights the multi-functionality of these conspicuous proteins.The authors acknowledge funding provided by University of Texas at Arlington start-up funds to LDM. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Biological Sciences, School o

    National identity predicts public health support during a global pandemic

    No full text

    Predicting attitudinal and behavioral responses to COVID-19 pandemic using machine learning

    No full text

    Structure Analysis

    No full text
    corecore