710 research outputs found

    RF trapping and acceleration in Austron

    Get PDF

    Automatic Error Localization for Software using Deductive Verification

    Full text link
    Even competent programmers make mistakes. Automatic verification can detect errors, but leaves the frustrating task of finding the erroneous line of code to the user. This paper presents an automatic approach for identifying potential error locations in software. It is based on a deductive verification engine, which detects errors in functions annotated with pre- and post-conditions. Using an automatic theorem prover, our approach finds expressions in the code that can be modified such that the program satisfies its specification. Scalability is achieved by analyzing each function in isolation. We have implemented our approach in the widely used Frama-C framework and present first experimental results. This is an extended version of [8], featuring an additional appendix.Comment: This is an extended version of [8], featuring an additional appendi

    A fast low-noise charged-particle CVD diamond detector

    Get PDF

    Some thoughts on the focusing regime for an Alvarez linac

    Get PDF
    When designing an Alvarez linac the perennial problem arises as to what is the optimum phase advance and focusing structure. This report discusses this question and makes recommendations based on simple criteria. The general conclusions are valid over a wide range of parameters, but the detailed simulations given in the report can be used to calculate the optima more carefully for a particular beam current and energy range. This study is complementary to the AUSTRON Feasibility Study for a fast-cycling, synchrotron-driven neutron spallation source

    Diamond pixel detector for beam profile monitoring in COMET experiment at J-PARC

    Full text link
    We present the design and initial prototype results of a pixellized proton beam profile monitor for the COMET experiment at J-PARC. The goal of COMET is to look for charged lepton flavor violation by direct muon to electron conversion at a sensitivity of 0190^{-19}. An 8 GeV proton beam pulsed at 100 ns with 101010^{10} protons/s will be used to create muons through pion production and decay. In the final experiment, the proton flux will be raised to 101410^{14} protons/sec to increase the sensitivity. These requirements of harsh radiation tolerance and fast readout make diamond a good choice for constructing a beam profile monitor in COMET. We present first results of the characterization of single crystal diamond (scCVD) sourced from a new company, 2a systems Singapore. Our measurements indicate excellent charge collection efficiency and high carrier mobility down to cryogenic temperatures.Comment: Pixel 2014 Workshop proceedings in JINS

    Equivalence Checking a Floating-point Unit against a High-level C Model

    Get PDF
    Semiconductor companies have increasingly adopted a methodology that starts with a system-level design specification in C/C++/SystemC. This model is extensively simulated to ensure correct functionality and performance. Later, a Register Transfer Level (RTL) implementation is created in Verilog, either manually by a designer or automatically by a high-level synthesis tool. It is essential to check that the C and Verilog programs are consistent. In this paper, we present a two-step approach, embodied in two equivalence checking tools, VERIFOX and HW-CBMC, to validate designs at the software and RTL levels, respectively. VERIFOX is used for equivalence checking of an untimed software model in C against a high-level reference model in C. HW-CBMC verifies the equivalence of a Verilog RTL implementation against an untimed software model in C. To evaluate our tools, we applied them to a commercial floating-point arithmetic unit (FPU) from ARM and an open-source dual-path floating-point adder

    A CVD diamond detector for (n,alpha) cross section measurements

    Get PDF
    Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike LicenceIn astrophysics, the determination of the optical alpha-nucleus potential for low alpha-particle energies, crucial in understanding the origin of the stable isotopes, has turned out to be a challenge. Theory still cannot predict the optical potentials required for the calculation of the astrophysical reaction rates in the Hauser-Feshbach statistical model and there is scant experimental information on reactions with alpha particles at the relevant astrophysical energies. Measurements of (n,alpha) cross-sections offer a good opportunity to study the alpha channel. At the n_TOF experiment at CERN, a prototype detector, based on the chemical vapor deposition (CVD) diamond technology, has been recently developed for (n,alpha) measurements. A reference measurement of the 10B(n,alpha)7Li reaction was performed in 2011 at n_TOF as a feasibility study for this detector type. The results of this measurement and an outline for future experiments are presented here

    A 0.5 MW/10 Hz option of the spallation source AUSTRON

    Get PDF
    In 1993-94 a feasibility study for AUSTRON, a neutron spallation source, was made on behalf of the Austrian Ministry of Science and Research. At that time, the machine was synchrotron cycling at 25 Hz and delivering an average beam power of 205 kW at 1.6 GeV. An option to double the power by doubling the frequency was foreseen. Now a more ambitious development of the original concept is proposed that aims at 0.5 MW at 1.6 GeV, pulsed at either 50 Hz or 10 Hz. The slow repetition rate is achieved by the addition of a storage ring holding four consecutive (single bunch) pulses from the 50 Hz synchrotron until a fifth pulse is accelerated and transferred to the target with the four stored ones. In this way, an energy per pulse of 50 kJ (one half of the pulse energy of the 5 MW ESS) is obtained, yielding about 3.5*10/sup 16/ thermal neutrons/(s cm/sup 2/). This peak flux matches well a number of innovative instruments and allows unprecedented resolution for some more conventional ones. On August 20, 1998, the Austrian Government has unanimously decided to contribute one third of the total cost of the facility and invites international partners to participate. (13 refs)
    corecore