45 research outputs found

    Fast ion transport during applied 3D magnetic perturbations on DIII-D

    Get PDF
    Measurements show fast ion losses correlated with applied three-dimensional (3D) fields in a variety of plasmas ranging from L-mode to resonant magnetic perturbation (RMP) edge localized mode (ELM) suppressed H-mode discharges. In DIII-D L-mode discharges with a slowly rotating n = 2 magnetic perturbation, scintillator detector loss signals synchronized with the applied fields are observed to decay within one poloidal transit time after beam turnoff indicating they arise predominantly from prompt loss orbits. Full orbit following using M3D-C1 calculations of the perturbed fields and kinetic profiles reproduce many features of the measured losses and points to the importance of the applied 3D field phase with respect to the beam injection location in determining the overall impact on prompt beam ion loss. Modeling of these results includes a self-consistent calculation of the 3D perturbed beam ion birth profiles and scrape-off-layer ionization, a factor found to be essential to reproducing the experimental measurements. Extension of the simulations to full slowing down timescales, including fueling and the effects of drag and pitch angle scattering, show the applied n = 3 RMPs in ELM suppressed H-mode plasmas can induce a significant loss of energetic particles from the core. With the applied n = 3 fields, up to 8.4% of the injected beam power is predicted to be lost, compared to 2.7% with axisymmetric fields only. These fast ions, originating from minor radii ρ > 0.7, are predicted to be primarily passing particles lost to the divertor region, consistent with wide field-of-view infrared periscope measurements of wall heating in n = 3 RMP ELM suppressed plasmas. Edge fast ion Dα (FIDA) measurements also confirm a large change in edge fast ion profile due to the n = 3 fields, where the effect was isolated by using short 50ms RMP-off periods during which ELM suppression was maintained yet the fast ion profile was allowed to recover. The role of resonances between fast ion drift motion and the applied 3D fields in the context of selectively targeting regions of fast ion phase space is also discussed

    Understanding LOC/SOC phenomenology in tokamaks

    No full text
    Phenomenology of Ohmic energy confinement saturation in tokamaks is reviewed. Characteristics of the linear Ohmic confinement (LOC) and saturated Ohmic confinement (SOC) regimes are documented and transformations in all transport channels across the LOC/SOC transition are described, including rotation reversals, 'non-local' cut-off and density peaking, in addition to dramatic changes in fluctuation intensity. Unification of results from nearly 20 devices indicates that the LOC/SOC transition occurs at a critical value of the product of the density, edge safety factor and device major radius, and that this product increases with toroidal magnetic field. Comparison with gyro-kinetic simulations suggests that the effects of sub-dominant TEMs are important in the LOC regime while ITG mode turbulence dominates with SOC

    Magnetic shear effect on plasma transport at Te/Ti ~ 1 through electron cyclotron heating in DIII-D plasmas

    No full text
    The effect of magnetic shear on plasma transport for an electron to ion temperature ratio (Te/Ti) near unity has been explored in DIII-D utilizing electron cyclotron heating (ECH). Previous reports showed that significant confinement degradation occurred at Te/Ti ~ 1 in positive shear (PS) plasmas in DIII-D, whereas reduced confinement degradation was observed in negative central shear (NCS) plasmas. In this study, plasma transport in weak magnetic shear (WS) plasmas with ECH is investigated and compared with that in NCS and PS plasmas. Here the magnetic shears (s^\hat s) are s^\hat s > 0.5, ~0 and <-0.1 in the core region (ρ~ 0.3–0.4) of PS, WS and NCS plasmas, respectively, and flat or negative inside ρ~ 0.4 in the WS and NCS plasmas. Weak magnetic shear is found to be effective in minimizing degradation of ion thermal confinement as Te/Ti increases through ECH application, and an improved confinement factor of H98y2 ~ 1.2 is maintained, similar to NCS plasmas. At Te/Ti ~ 1, the ion thermal diffusivity around an internal transport barrier decreases when changing the magnetic shear from positive to weak or negative shear. Also, reduced local particle and momentum transport was indicated by steeper density and toroidal rotation profiles in the weak and negative shear regimes. Linear gyrokinetic simulations predict little change in growth rates of low-k turbulence with ECH application in the WS and NCS plasmas, which is consistent with the transport and profile analyses

    Phase-locking of magnetic islands diagnosed by ECE-imaging

    No full text
    Millimeter-wave imaging diagnostics identify phase-locking and the satisfaction of 3-wave coupling selection criteria among multiple magnetic island chains by providing a localized, internal measurement of the 2D power spectral density, S(ω, k pol ). In high-confinement tokamak discharges, these interactions impact both plasma rotation and tearing stability. Nonlinear coupling among neoclassical tearing modes of different n-number, with islands not satisfying the poloidal mode number selection criterion ⟨m, m ′, m − m ′⟩, contributes to a reduction in core rotation and flow shear in the vicinity of the modes

    Progress and challenges in understanding core transport in tokamaks in support to ITER operations

    No full text
    Fusion performance in tokamaks depends on the core and edge regions as well as on their nonlinear feedbacks. The achievable degree of edge confinement under the constraints of power handling in presence of a metallic wall is still an open question. Therefore, any improvement in the core temperature and density peaking is crucial for achieving target performance. This has motivated further progress in understanding core turbulent transport mechanisms, to help scenario development in present devices and improve predictive tools for ITER operations. In the last two decades, detailed experiments and their interpretation via the gyrokinetic theory of turbulent transport have led to a satisfactory level of understanding of the heat, particle, and momentum transport channels and of their mutual interactions. This paper presents some highlights of the progress, which stems from joint work of several devices and theory groups, in Europe and worldwide within the International Tokamak Physics Activities framework. On the other hand, the achievement of predictive capabilities of plasma profiles via integrated modeling, which also accounts for the nonlinear interactions inherent to the multi-channel nature of transport, is a priority in view of ITER. This requires using faster, reduced models, and the extent to which they capture the complex physics described by nonlinear gyrokinetics must be carefully evaluated. Present quasi-linear models match well experiments in baseline scenarios, and thus offer reliable predictions for the ITER reference scenario, but have issues in advanced scenarios. Some of these challenges are examined and discussed. In the longer term, advances in high performance computing will continue to drive physics discovery through increasingly complex gyrokinetic simulations, allowing also further development of reduced models. The development of neural network surrogate models is another recent advance that bridges the gap towards physics-based fast models for optimization and control applications
    corecore