162 research outputs found

    RANDOM EVOLUTIONS, MARKOV CHAINS, AND SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS

    Full text link

    Canonical quantum gravity in the Vassiliev invariants arena: II. Constraints, habitats and consistency of the constraint algebra

    Get PDF
    In a companion paper we introduced a kinematical arena for the discussion of the constraints of canonical quantum gravity in the spin network representation based on Vassiliev invariants. In this paper we introduce the Hamiltonian constraint, extend the space of states to non-diffeomorphism invariant ``habitats'' and check that the off-shell quantum constraint commutator algebra reproduces the classical Poisson algebra of constraints of general relativity without anomalies. One can therefore consider the resulting set of constraints and space of states as a consistent theory of canonical quantum gravity.Comment: 20 Pages, RevTex, many figures included with psfi

    Lattice knot theory and quantum gravity in the loop representation

    Get PDF
    We present an implementation of the loop representation of quantum gravity on a square lattice. Instead of starting from a classical lattice theory, quantizing and introducing loops, we proceed backwards, setting up constraints in the lattice loop representation and showing that they have appropriate (singular) continuum limits and algebras. The diffeomorphism constraint reproduces the classical algebra in the continuum and has as solutions lattice analogues of usual knot invariants. We discuss some of the invariants stemming from Chern--Simons theory in the lattice context, including the issue of framing. We also present a regularization of the Hamiltonian constraint. We show that two knot invariants from Chern--Simons theory are annihilated by the Hamiltonian constraint through the use of their skein relations, including intersections. We also discuss the issue of intersections with kinks. This paper is the first step towards setting up the loop representation in a rigorous, computable setting.Comment: 23 pages, RevTeX, 14 figures included with psfi

    Is the third coefficient of the Jones knot polynomial a quantum state of gravity?

    Get PDF
    Some time ago it was conjectured that the coefficients of an expansion of the Jones polynomial in terms of the cosmological constant could provide an infinite string of knot invariants that are solutions of the vacuum Hamiltonian constraint of quantum gravity in the loop representation. Here we discuss the status of this conjecture at third order in the cosmological constant. The calculation is performed in the extended loop representation, a generalization of the loop representation. It is shown that the the Hamiltonian does not annihilate the third coefficient of the Jones polynomal (J3J_3) for general extended loops. For ordinary loops the result acquires an interesting geometrical meaning and new possibilities appear for J3J_3 to represent a quantum state of gravity.Comment: 22 page

    Consistent canonical quantization of general relativity in the space of Vassiliev knot invariants

    Get PDF
    We present a quantization of the Hamiltonian and diffeomorphism constraint of canonical quantum gravity in the spin network representation. The novelty consists in considering a space of wavefunctions based on the Vassiliev knot invariants. The constraints are finite, well defined, and reproduce at the level of quantum commutators the Poisson algebra of constraints of the classical theory. A similar construction can be carried out in 2+1 dimensions leading to the correct quantum theory.Comment: 4 pages, RevTex, one figur
    corecore