57 research outputs found

    The relationship between dietary patterns and metabolic health in a representative sample of adult Australians

    Get PDF
    Studies assessing dietary intake and its relationship to metabolic phenotype are emerging, but limited. The aims of the study are to identify dietary patterns in Australian adults, and to determine whether these dietary patterns are associated with metabolic phenotype and obesity. Cross-sectional data from the Australian Bureau of Statistics 2011 Australian Health Survey was analysed. Subjects included adults aged 45 years and over (n = 2415). Metabolic phenotype was determined according to criteria used to define metabolic syndrome (0–2 abnormalities vs. 3–7 abnormalities), and additionally categorized for obesity (body mass index (BMI) ≥30 kg/m2 vs. BMI <30 kg/m2). Dietary patterns were derived using factor analysis. Multivariable models were used to assess the relationship between dietary patterns and metabolic phenotype, with adjustment for age, sex, smoking status, socio-economic indexes for areas, physical activity and daily energy intake. Twenty percent of the population was metabolically unhealthy and obese. In the fully adjusted model, for every one standard deviation increase in the Healthy dietary pattern, the odds of having a more metabolically healthy profile increased by 16% (odds ratio (OR) 1.16; 95% confidence interval (CI): 1.04, 1.29). Poor metabolic profile and obesity are prevalent in Australian adults and a healthier dietary pattern plays a role in a metabolic and BMI phenotypes. Nutritional strategies addressing metabolic syndrome criteria and targeting obesity are recommended in order to improve metabolic phenotype and potential disease burden

    Strategies towards improving pharmacological management of asthma during pregnancy

    Get PDF
    Maternal asthma represents a significant burden to individuals and the healthcare system, affecting 1 in 10 pregnancies worldwide. Approximately 50% of asthmatic women experience a deterioration of asthma control at some stage during pregnancy, with a number requiring use of oral corticosteroids for the management of acute exacerbations. The presence of maternal asthma and exacerbations during pregnancy is a noted risk factor for a range of adverse perinatal outcomes including preterm birth, small-for-gestational age, pre-eclampsia, and gestational diabetes. These negative impacts highlight the need for evidence-based approaches for improving asthma management during pregnancy and subsequent perinatal outcomes. Despite this, relatively small progress has been made in enhancing the management of maternal asthma in the clinical setting. A major challenge in improving outcomes of asthmatic pregnancies is that there is no single simplified approach for improving outcomes, but rather the requirement to consider the dynamic relationship between a myriad of interrelated factors that ultimately determine an individual's ability to maintain adequate asthma control. Understanding how these factors are impacted by pregnancy and how they can be addressed through various interventions is therefore important in optimising health outcomes. This review summarises key factors involved in influencing outcomes associated with maternal asthma. This includes an overview of the use of asthma medications in pregnancy, while also considering the impacts of interrelated aspects such as medication adherence, health-seeking behaviours, biological and lifestyle factors, co-morbidities, and asthma self-management strategies on asthma control. Addressing such factors through multidisciplinary approaches towards treatment have potential to improve the health of mothers and their offspring. Optimising asthma control should be a high priority within the antenatal setting, with women advised about the importance of good asthma control, managing asthma actively throughout pregnancy by utilising their asthma medications, and managing exacerbations in a timely and effective manner

    Discrete strategies to reduce intake of discretionary food choices: a scoping review

    Get PDF
    On a population level, dietary improvement strategies have had limited success in preventing the surge in overweight and obesity or reducing risk factors for chronic disease. While numerous multi-component studies have examined whole-of-diet strategies, and single component (i.e. discrete) dietary intervention strategies have targeted an increase in core foods (e.g. fruits, vegetables, dairy), there is a paucity of evidence on the effectiveness of dietary intervention strategies targeting a decrease in discretionary choices. The aim of this review was to identify dietary intervention strategies that are potentially relevant to reducing intake of discretionary choices in 2–65 year olds. A scoping review was carried out to map the literature on key discrete dietary intervention strategies that are potentially applicable to reducing discretionary choices, and to identify the targeted health/nutrition effects (e.g. improve nutrient intake, decrease sugar intake, and reduce body weight) of these strategies. Studies conducted in participants aged 2–65 years and published in English by July 20, 2015, were located through electronic searches including the Cochrane Library, Medline, Embase, CINAHL, and Scopus. Three thousand two hundred and eighty three studies were identified from the search, of which 44 met the selection criteria. The dietary intervention strategies included reformulation (n = 13), substitution (n = 5), restriction/elimination (n = 9), supplementation (n = 13), and nutrition education/messages (n = 4). The key findings of the review were: restricting portion size was consistently beneficial for reducing energy intake in the acute setting; reformulating foods from higher fat to lower fat could be useful to reduce saturated fat intake; substituting discretionary choices for high fibre snacks, fruit, or low/no-calorie beverages may be an effective strategy for reducing energy intake; supplementing nutrient dense foods such as nuts and wholegrain cereals supports an improved overall diet quality; and, a combination of permissive and restrictive nutrition messages may effectively modify behavior to reduce discretionary choices intake. Longer-term, well-controlled studies are required to assess the effectiveness of the identified dietary strategies as interventions to reduce discretionary choices intake

    Walnut oil increases cholesterol efflux through inhibition of stearoyl CoA desaturase 1 in THP-1 macrophage-derived foam cells

    Get PDF
    Extent: 13p.Background: Walnuts significantly decrease total and low-density lipoprotein cholesterol in normo- and hypercholesterolemic individuals. No study to date has evaluated the effects of walnuts on cholesterol efflux, the initial step in reverse cholesterol transport, in macrophage-derived foam cells (MDFC). The present study was conducted to investigate the mechanisms by which walnut oil affects cholesterol efflux. Methods: The extract of English walnuts (walnut oil) was dissolved in DMSO and applied to cultured THP-1 MDFC cells (0.5 mg/mL). THP-1 MDFC also were treated with human sera (10%, v:v) taken from subjects in a walnut feeding study. Cholesterol efflux was examined by liquid scintillation counting. Changes in gene expression were quantified by real time PCR. Results: Walnut oil treatment significantly increased cholesterol efflux through decreasing the expression of the lipogenic enzyme stearoyl CoA desaturase 1 (SCD1) in MDFC. Alpha-linolenic acid (ALA), the major n-3 polyunsaturated fatty acids found in walnuts, recaptured SCD1 reduction in MDFC, a mechanism mediated through activation of nuclear receptor farnesoid-X-receptor (FXR). Postprandial serum treatment also increased cholesterol efflux in MDFC. When categorized by baseline C-reactive protein (CRP; cut point of 2 mg/L), subjects in the lower CRP sub-group benefited more from dietary intervention, including a more increase in cholesterol efflux, a greater reduction in SCD1, and a blunted postprandial lipemia. Conclusion: In conclusion, walnut oil contains bioactive molecules that significantly improve cholesterol efflux in MDFC. However, the beneficial effects of walnut intake may be reduced by the presence of a pro-inflammatory state.Jun Zhang, Jessica A Grieger, Penny M Kris-Etherton, Jerry T Thompson, Peter J Gillies, Jennifer A Fleming and John P Vanden Heuve

    Noninvasive optical inhibition with a red-shifted microbial rhodopsin

    Get PDF
    Optogenetic inhibition of the electrical activity of neurons enables the causal assessment of their contributions to brain functions. Red light penetrates deeper into tissue than other visible wavelengths. We present a red-shifted cruxhalorhodopsin, Jaws, derived from Haloarcula (Halobacterium) salinarum (strain Shark) and engineered to result in red light–induced photocurrents three times those of earlier silencers. Jaws exhibits robust inhibition of sensory-evoked neural activity in the cortex and results in strong light responses when used in retinas of retinitis pigmentosa model mice. We also demonstrate that Jaws can noninvasively mediate transcranial optical inhibition of neurons deep in the brains of awake mice. The noninvasive optogenetic inhibition opened up by Jaws enables a variety of important neuroscience experiments and offers a powerful general-use chloride pump for basic and applied neuroscience.McGovern Institute for Brain Research at MIT (Razin Fellowship)United States. Defense Advanced Research Projects Agency. Living Foundries Program (HR0011-12-C-0068)Harvard-MIT Joint Research Grants Program in Basic NeuroscienceHuman Frontier Science Program (Strasbourg, France)Institution of Engineering and Technology (A. F. Harvey Prize)McGovern Institute for Brain Research at MIT. Neurotechnology (MINT) ProgramNew York Stem Cell Foundation (Robertson Investigator Award)National Institutes of Health (U.S.) (New Innovator Award 1DP2OD002002)National Institute of General Medical Sciences (U.S.) (EUREKA Award 1R01NS075421)National Institutes of Health (U.S.) (Grant 1R01DA029639)National Institutes of Health (U.S.) (Grant 1RC1MH088182)National Institutes of Health (U.S.) (Grant 1R01NS067199)National Science Foundation (U.S.) (Career Award CBET 1053233)National Science Foundation (U.S.) (Grant EFRI0835878)National Science Foundation (U.S.) (Grant DMS0848804)Society for Neuroscience (Research Award for Innovation in Neuroscience)Wallace H. Coulter FoundationNational Institutes of Health (U.S.) (RO1 MH091220-01)Whitehall FoundationEsther A. & Joseph Klingenstein Fund, Inc.JPB FoundationPIIF FundingNational Institute of Mental Health (U.S.) (R01-MH102441-01)National Institutes of Health (U.S.) (DP2-OD-017366-01)Massachusetts Institute of Technology. Simons Center for the Social Brai

    Genotype-stratified treatment for monogenic insulin resistance: a systematic review

    Get PDF

    Precision gestational diabetes treatment: a systematic review and meta-analyses

    Get PDF

    A Review of the Impact of Dietary Intakes in Human Pregnancy on Infant Birthweight

    Get PDF
    Studies assessing maternal dietary intakes and the relationship with birthweight are inconsistent, thus attempting to draw inferences on the role of maternal nutrition in determining the fetal growth trajectory is difficult. The aim of this review is to provide updated evidence from epidemiological and randomized controlled trials on the impact of dietary and supplemental intakes of omega-3 long-chain polyunsaturated fatty acids, zinc, folate, iron, calcium, and vitamin D, as well as dietary patterns, on infant birthweight. A comprehensive review of the literature was undertaken via the electronic databases Pubmed, Cochrane Library, and Medline. Included articles were those published in English, in scholarly journals, and which provided information about diet and nutrition during pregnancy and infant birthweight. There is insufficient evidence for omega-3 fatty acid supplements’ ability to reduce risk of low birthweight (LBW), and more robust evidence from studies supplementing with zinc, calcium, and/or vitamin D needs to be established. Iron supplementation appears to increase birthweight, particularly when there are increases in maternal hemoglobin concentrations in the third trimester. There is limited evidence supporting the use of folic acid supplements to reduce the risk for LBW; however, supplementation may increase birthweight by ~130 g. Consumption of whole foods such as fruit, vegetables, low-fat dairy, and lean meats throughout pregnancy appears beneficial for appropriate birthweight. Intervention studies with an understanding of optimal dietary patterns may provide promising results for both maternal and perinatal health. Outcomes from these studies will help determine what sort of dietary advice could be promoted to women during pregnancy in order to promote the best health for themselves and their baby

    Ageing and inflammation

    Full text link

    Antioxidant-rich dietary intervention for improving asthma control in pregnancies complicated by asthma: study protocol for a randomized controlled trial

    Get PDF
    Background: Asthma is the most prevalent chronic disease to complicate pregnancies worldwide, affecting around 12% of pregnant women in Australia. Oxidative stress and inflammation manifest during pregnancy; however asthma in pregnancies further intensifies oxidative stress. Consumption of antioxidant-rich foods has been shown to be beneficial for asthma control in non-pregnant asthmatic adults. It has not been investigated whether antioxidant-rich foods can improve the elevated oxidative stress that occurs with asthma in pregnancy, thereby improving asthma control. The primary aim of this study is to determine whether increased consumption of antioxidant-rich foods for 12 weeks will improve maternal asthma control, compared to standard dietary intake during pregnancy. Methods/design: A 12 week, parallel randomized controlled trial will be conducted. One hundred and sixty eight pregnant women with mild, moderate, or severe asthma, currently using inhaled corticosteroids, and with poor diet quality, will be recruited at approximately12 weeks gestation. Following a 4 week run-in period, women will be randomized to either a 12 week antioxidant intervention (increased consumption of antioxidant-rich foods (≥5 servings/day vegetables, ≥2 servings/day fruit, ≥8 ½ servings/day grains (mostly wholegrains), 3–4 serving/week lean meat) or standard pregnancy care. The primary outcome is asthma control score (decrease of 0.5, the minimally clinically significant change). Secondary outcomes include plasma antioxidants, markers of oxidative stress, and time to, and number of, exacerbations. With two-tailed t-tests at 80% power, a sample size of 52 completions per group is required. Allowing for a 78% retention including a 20% removal of women from the analysis due to non-compliance, we will recruit 168 women. Discussion: It is expected that this 12 week study will improve asthma control. This is significant because asthma is the most prevalent condition to complicate pregnancies and contributes to poor maternal, neonatal and infant health outcomes. Our research will provide the first evidence to show that, in pregnancy, consumption of antioxidant-rich foods is a key modifier of clinical asthma status. This research is crucial for contributing to the evidence base to inform future guidelines given existing clinical and research gaps. Trial registration: ACTRN1261300030176
    corecore