62 research outputs found
Affadavit of Richard Gridley, signed by John Hill
Affadavit of Richard Gridley making oath to not hold any other place of employment of profit, civil or military under his majesty, except as a reduced Captain in the First Reduced Regiment of Foot. Signed by Richard Gridley and John Hill, the Justice of the Peace, dated June 25, 1771.https://digitalcommons.wofford.edu/littlejohnmss/1085/thumbnail.jp
Low-light Environment Neural Surveillance
We design and implement an end-to-end system for real-time crime detection in
low-light environments. Unlike Closed-Circuit Television, which performs
reactively, the Low-Light Environment Neural Surveillance provides real time
crime alerts. The system uses a low-light video feed processed in real-time by
an optical-flow network, spatial and temporal networks, and a Support Vector
Machine to identify shootings, assaults, and thefts. We create a low-light
action-recognition dataset, LENS-4, which will be publicly available. An IoT
infrastructure set up via Amazon Web Services interprets messages from the
local board hosting the camera for action recognition and parses the results in
the cloud to relay messages. The system achieves 71.5% accuracy at 20 FPS. The
user interface is a mobile app which allows local authorities to receive
notifications and to view a video of the crime scene. Citizens have a public
app which enables law enforcement to push crime alerts based on user proximity.Comment: Pre-print, accepted to IEEE International Workshop on Machine
Learning for Signal Processing 2020 Conference Proceedings. Code and dataset
are available at https://github.com/mcgridles
Recommended from our members
Tumor Response to Radiotherapy is Dependent on Genotype-Associated Mechanisms in vitro and in vivo
Background: We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy. In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose. Methods: We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses. Results: Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose. Conclusions: We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size
Phenotype and Fate of Liver-Resident CD8 T Cells During Acute and Chronic Hepacivirus Infection
Immune correlates of hepatitis C virus (HCV) clearance and control remain poorly defined due to the lack of an informative animal model. We recently described acute and chronic rodent HCV-like virus (RHV) infections in lab mice. Here, we developed MHC class I and class II tetramers to characterize the serial changes in RHV-specific CD8 and CD4 T cells during acute and chronic infection in C57BL/6J mice. RHV infection induced rapid expansion of T cells targeting viral structural and nonstructural proteins. After virus clearance, the virus-specific T cells transitioned from effectors to long-lived liver-resident memory T cells (TRM). The effector and memory CD8 and CD4 T cells primarily produced Th1 cytokines, IFN-γ, TNF-α, and IL-2, upon ex vivo antigen stimulation, and their phenotype and transcriptome differed significantly between the liver and spleen. Rapid clearance of RHV reinfection coincided with the proliferation of virus-specific CD8 TRM cells in the liver. Chronic RHV infection was associated with the exhaustion of CD8 T cells (Tex) and the development of severe liver diseases. Interestingly, the virus-specific CD8 Tex cells continued proliferation in the liver despite the persistent high-titer viremia and retained partial antiviral functions, as evident from their ability to degranulate and produce IFN-γ upon ex vivo antigen stimulation. Thus, RHV infection in mice provides a unique model to study the function and fate of liver-resident T cells during acute and chronic hepatotropic infection
Prospects for progress on health inequalities in England in the post-primary care trust era : professional views on challenges, risks and opportunities
Background - Addressing health inequalities remains a prominent policy objective of the current UK government, but current NHS reforms involve a significant shift in roles and responsibilities. Clinicians are now placed at the heart of healthcare commissioning through which significant inequalities in access, uptake and impact of healthcare services must be addressed. Questions arise as to whether these new arrangements will help or hinder progress on health inequalities. This paper explores the perspectives of experienced healthcare professionals working within the commissioning arena; many of whom are likely to remain key actors in this unfolding scenario.
Methods - Semi-structured interviews were conducted with 42 professionals involved with health and social care commissioning at national and local levels. These included representatives from the Department of Health, Primary Care Trusts, Strategic Health Authorities, Local Authorities, and third sector organisations.
Results - In general, respondents lamented the lack of progress on health inequalities during the PCT commissioning era, where strong policy had not resulted in measurable improvements. However, there was concern that GP-led commissioning will fare little better, particularly in a time of reduced spending. Specific concerns centred on: reduced commitment to a health inequalities agenda; inadequate skills and loss of expertise; and weakened partnership working and engagement. There were more mixed opinions as to whether GP commissioners would be better able than their predecessors to challenge large provider trusts and shift spend towards prevention and early intervention, and whether GPs’ clinical experience would support commissioning action on inequalities. Though largely pessimistic, respondents highlighted some opportunities, including the potential for greater accountability of healthcare commissioners to the public and more influential needs assessments via emergent Health & Wellbeing Boards.
Conclusions - There is doubt about the ability of GP commissioners to take clearer action on health inequalities than PCTs have historically achieved. Key actors expect the contribution from commissioning to address health inequalities to become even more piecemeal in the new arrangements, as it will be dependent upon the interest and agency of particular individuals within the new commissioning groups to engage and influence a wider range of stakeholders.</p
Tumor response to radiotherapy is dependent on genotype-associated mechanisms in vitro and in vivo
<p>Abstract</p> <p>Background</p> <p>We have previously shown that in vitro radiosensitivity of human tumor cells segregate non-randomly into a limited number of groups. Each group associates with a specific genotype. However we have also shown that abrogation of a single gene (p21) in a human tumor cell unexpectedly sensitized xenograft tumors comprised of these cells to radiotherapy while not affecting in vitro cellular radiosensitivity. Therefore in vitro assays alone cannot predict tumor response to radiotherapy.</p> <p>In the current work, we measure in vitro radiosensitivity and in vivo response of their xenograft tumors in a series of human tumor lines that represent the range of radiosensitivity observed in human tumor cells. We also measure response of their xenograft tumors to different radiotherapy protocols. We reduce these data into a simple analytical structure that defines the relationship between tumor response and total dose based on two coefficients that are specific to tumor cell genotype, fraction size and total dose.</p> <p>Methods</p> <p>We assayed in vitro survival patterns in eight tumor cell lines that vary in cellular radiosensitivity and genotype. We also measured response of their xenograft tumors to four radiotherapy protocols: 8 × 2 Gy; 2 × 5Gy, 1 × 7.5 Gy and 1 × 15 Gy. We analyze these data to derive coefficients that describe both in vitro and in vivo responses.</p> <p>Results</p> <p>Response of xenografts comprised of human tumor cells to different radiotherapy protocols can be reduced to only two coefficients that represent 1) total cells killed as measured in vitro 2) additional response in vivo not predicted by cell killing. These coefficients segregate with specific genotypes including those most frequently observed in human tumors in the clinic. Coefficients that describe in vitro and in vivo mechanisms can predict tumor response to any radiation protocol based on tumor cell genotype, fraction-size and total dose.</p> <p>Conclusions</p> <p>We establish an analytical structure that predicts tumor response to radiotherapy based on coefficients that represent in vitro and in vivo responses. Both coefficients are dependent on tumor cell genotype and fraction-size. We identify a novel previously unreported mechanism that sensitizes tumors in vivo; this sensitization varies with tumor cell genotype and fraction size.</p
Physical therapy vs. internet-based exercise training (PATH-IN) for patients with knee osteoarthritis: study protocol of a randomized controlled trial
Abstract Background Physical activity improves pain and function among individuals with knee osteoarthritis (OA), but most people with this condition are inactive. Physical therapists play a key role in helping people with knee OA to increase appropriate physical activity. However, health care access issues, financial constraints, and other factors impede some patients from receiving physical therapy (PT) for knee OA. A need exists to develop and evaluate other methods to provide physical activity instruction and support to people with knee OA. This study is examining the effectiveness of an internet-based exercise training (IBET) program designed for knee OA, designed by physical therapists and other clinicians. Methods/Design This is a randomized controlled trial of 350 participants with symptomatic knee OA, allocated to three groups: IBET, standard PT, and a wait list (WL) control group (in a 2:2:1 ratio, respectively). The study was funded by the Patient Centered Outcomes Research Institute, which conducted a peer review of the proposal. The IBET program provides patients with a tailored exercise program (based on functional level, symptoms, and current activity), video demonstrations of exercises, and guidance for appropriate exercise progression. The PT group receives up to 8 individual visits with a physical therapist, mirroring standard practice for knee OA and with an emphasis on a home exercise program. Outcomes are assessed at baseline, 4 months (primary time point) and 12 months (to assess maintenance of treatment effects). The primary outcome is the Western Ontario and McMaster Universities Osteoarthritis Index, and secondary outcomes include objective physical function, satisfaction with physical function, physical activity, depressive symptoms and global assessment of change. Linear mixed models will be used to compare both the IBET and standard PT groups to the WL control group, examine whether IBET is non-inferior to PT (a treatment that has an established evidence base for knee OA), and explore whether participant characteristics are associated with differential effects of IBET and/or standard PT. This research is in compliance with the Helsinki Declaration and was approved by the Institutional Review Board of the University of North Carolina at Chapel Hill. Discussion The IBET program could be disseminated widely at relatively low cost and could be an important resource for helping patients with knee OA to adopt and maintain appropriate physical activity. This trial will provide an important evaluation of the effectiveness of this IBET program for knee OA. Trial registration NCT0231271
Efficient Elimination of Cancer Cells by Deoxyglucose-ABT-263/737 Combination Therapy
As single agents, ABT-263 and ABT-737 (ABT), molecular antagonists of the Bcl-2 family, bind tightly to Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1, and induce apoptosis only in limited cell types. The compound 2-deoxyglucose (2DG), in contrast, partially blocks glycolysis, slowing cell growth but rarely causing cell death. Injected into an animal, 2DG accumulates predominantly in tumors but does not harm other tissues. However, when cells that were highly resistant to ABT were pre-treated with 2DG for 3 hours, ABT became a potent inducer of apoptosis, rapidly releasing cytochrome c from the mitochondria and activating caspases at submicromolar concentrations in a Bak/Bax-dependent manner. Bak is normally sequestered in complexes with Mcl-1 and Bcl-xL. 2DG primes cells by interfering with Bak-Mcl-1 association, making it easier for ABT to dissociate Bak from Bcl-xL, freeing Bak to induce apoptosis. A highly active glucose transporter and Bid, as an agent of the mitochondrial apoptotic signal amplification loop, are necessary for efficient apoptosis induction in this system. This combination treatment of cancer-bearing mice was very effective against tumor xenograft from hormone-independent highly metastasized chemo-resistant human prostate cancer cells, suggesting that the combination treatment may provide a safe and effective alternative to genotoxin-based cancer therapies
Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation
Notch and Presenilin Regulate Cellular Expansion and Cytokine Secretion but Cannot Instruct Th1/Th2 Fate Acquisition
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation
- …