21 research outputs found

    Decision tool for the early diagnosis of trauma patient hypovolemia

    Get PDF
    AbstractWe present a classifier for use as a decision assist tool to identify a hypovolemic state in trauma patients during helicopter transport to a hospital, when reliable acquisition of vital-sign data may be difficult. The decision tool uses basic vital-sign variables as input into linear classifiers, which are then combined into an ensemble classifier. The classifier identifies hypovolemic patients with an area under a receiver operating characteristic curve (AUC) of 0.76 (standard deviation 0.05, for 100 randomly-reselected patient subsets). The ensemble classifier is robust; classification performance degrades only slowly as variables are dropped, and the ensemble structure does not require identification of a set of variables for use as best-feature inputs into the classifier. The ensemble classifier consistently outperforms best-features-based linear classifiers (the classification AUC is greater, and the standard deviation is smaller, p<0.05). The simple computational requirements of ensemble classifiers will permit them to function in small fieldable devices for continuous monitoring of trauma patients

    Supershape recovery from 3D data sets

    No full text
    In this paper, we apply supershapes and R-functions to surface recovery from 3D data sets. Individual supershapes are separately recovered from a segmented mesh. R-functions are used to perform Boolean operations between the reconstructed parts to obtain a single implicit equation of the reconstructed object that is used to define a global error reconstruction function. We present surface recovery results ranging from single synthetic data to real complex objects involving the composition of several supershapes and holes. Index Terms — Geometric modeling, signal reconstruction, boolean function
    corecore